花生脫殼機的設(shè)計【花生剝殼機-花生去殼機】【三維SW模型】【含全套CAD圖紙】
喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預(yù)覽哦。下載后都有,請放心下載,文件全都包含在內(nèi),有疑問咨詢QQ:1064457796
花生脫殼機的設(shè)計摘要本文首先花生脫殼機的脫殼原理,應(yīng)用現(xiàn)狀及現(xiàn)在市場上應(yīng)用的個脫殼機存在的問題進行調(diào)研分析,針對其問題進行了分析。根據(jù)設(shè)計要求及花生脫殼機的功能要求,確定了花生脫殼機的總體方案的設(shè)計,以封閉式滾筒脫殼機為研究對象,對脫殼機的關(guān)鍵脫殼部件、進料機構(gòu)、振動篩分選機構(gòu)和偏心輪機構(gòu)等部分進行詳細設(shè)計與三維建模分析。最后對本次設(shè)計心得體會與成果進行的總結(jié)。關(guān)鍵詞:花生脫殼機、滾筒、半籠柵、結(jié)構(gòu)設(shè)計目錄摘要1目錄21.緒論41.1本課題研究的背景及意義41.2 花生脫殼機的脫殼原理41.3 花生脫殼機的應(yīng)用現(xiàn)狀與未來發(fā)展趨勢51.3.1 花生脫殼機的應(yīng)用現(xiàn)狀介紹51.3.2 未來發(fā)展趨勢62. 花生脫殼機的整體結(jié)構(gòu)方案與工作原理82.1本設(shè)計中的脫殼原理82.2花生脫殼機的總體結(jié)構(gòu)82.3 殼仁分離裝置103. 花生脫殼機關(guān)鍵部件的結(jié)構(gòu)設(shè)計113.1脫殼部件的設(shè)計113.1.1滾筒半徑及轉(zhuǎn)速初定113.1.2脫殼機所需功率計算與電機選型133.1.3傳動裝置的傳動參數(shù)計算143.1.4電機與脫殼轉(zhuǎn)子軸之間的V帶傳動設(shè)計153.1.5滾筒材料的選擇193.2轉(zhuǎn)軸的設(shè)計與校核193.2.1初步確定軸的最小直徑193.2.2擬定軸上零件的裝配方案與尺寸確定203.2.3.主軸的強度校核213.2.4軸承的校核233.3比重分選篩動力系統(tǒng)設(shè)計243.3.1比重分選篩裝置設(shè)計243.3.2偏心輪轉(zhuǎn)軸設(shè)計253.3.3偏心軸的V帶傳動設(shè)計264. 花生脫殼機的各部件設(shè)計與三維建模274.1 關(guān)鍵組件的設(shè)計與三維建模274.1.1半柵籠274.1.2風(fēng)扇組件設(shè)計284.1.3箱體284.1.4料斗294.1.5振動篩的箱體304.1.5篩網(wǎng)314.1.6機架314.2 脫殼機的三維建模與裝置檢查32圖4.10 脫殼機三維模型的主視圖335.結(jié)論34致謝35參考文獻361.緒論1.1本課題研究的背景及意義花生是人們生活中重要的實物及食用油品的來源,花生需求量在增大,花生種植面積與產(chǎn)量也在增加。因此,這就要求對花生種植、收割及脫殼等機械裝置的發(fā)展與應(yīng)用滿足其生產(chǎn)需求。目前,采用機械自動脫殼設(shè)備的生產(chǎn)效率是遠遠高于人工手動效率,且降低農(nóng)民的工作強度,節(jié)省時間和生產(chǎn)成本1。針對花生脫殼的質(zhì)量要求,需要綜合分析其各影響因素,如脫殼設(shè)備的轉(zhuǎn)動特性、脫殼工藝流程和脫殼加工對象的形狀、干燥情況等物理特性。常用的脫殼設(shè)備主要由脫殼機外殼、轉(zhuǎn)子、篩分等部件,這里需要綜合考慮外形結(jié)構(gòu)形式、關(guān)鍵零部件材質(zhì)、幾何特征參數(shù)、各部件之間的配合參數(shù)以及動力學(xué)運動參數(shù)。目前,市場上出現(xiàn)的花生脫殼機設(shè)備種類型號繁多,結(jié)構(gòu)功能也是也有特點,但是多數(shù)的花生脫殼機還是或多或少的存在一些缺點,或不完善,比如脫殼性能不穩(wěn)定、花生的破損率高等問題 2。因此,本課題的研究目的是針對現(xiàn)有花生脫殼設(shè)備的應(yīng)用與發(fā)展現(xiàn)狀,分析各類脫殼機的脫殼原理、結(jié)構(gòu)組成及存在的問題進行優(yōu)化改進。1.2 花生脫殼機的脫殼原理花生脫殼機的工作原理就是通過高速旋轉(zhuǎn)的沖擊機體將花生仁與殼進行分離,在保證花生仁的完整性前提下,對花生仁進行篩分清。因此,采用最優(yōu)的脫殼原理是解決脫殼機現(xiàn)存問題?;ㄉ摎C的種類非常多,常用的脫殼機工作原理主要有以下幾種:(1)打擊法打擊法脫殼(離心式脫殼)是利用高速回轉(zhuǎn)的轉(zhuǎn)子部件給花生莢果強大的離心力作用,使得花生殼受到劇烈沖擊力破裂,花生殼受撞擊變形裂開,花生仁就從花生殼裂縫中脫落出來。離心式脫殼機脫殼方法對花生莢果的含水率有嚴(yán)格要求,且與脫殼轉(zhuǎn)子的轉(zhuǎn)速及加料量有密切聯(lián)系。2)擠壓法 擠壓法脫殼工作原理的利用具有一定量間距的兩個轉(zhuǎn)速相同,方向相反的滾筒擠壓花生莢果,在擠壓力作用下花生被壓破裂與花生仁分離達到脫殼。通過擠壓原理脫殼的影響因素主要是兩滾筒之間的間隙值,能否使莢果被夾住并順利進入間隙達到擠壓的目的。 (3)碾搓法 碾搓法脫殼的工作原理是利用一個固定磨片與一個運動磨片使得花生莢果在兩者之間通過,在定圓盤和擁有轉(zhuǎn)動離心力的動圓盤之間碾搓,受到碾搓作用撕碎花生殼,從而實現(xiàn)花生殼與花生仁分離的目的,如圖1.1所示。影響脫殼機效果的因素也是花生莢果含水率、圓盤表面幾何結(jié)構(gòu)和其轉(zhuǎn)速等。圖1.1碾搓法的工作原理(4)剪切法 剪切法脫殼的工作原理是固定刀架與高速運轉(zhuǎn)刀板之間的相對運動將花生莢果切裂打開,實現(xiàn)花生仁與殼分離。為增加脫殼機的使用范圍,可根據(jù)花生莢果顆粒大小來調(diào)節(jié)刀架與刀板之間的間距,這種脫殼原理設(shè)備脫殼時與花生莢果接觸面小,漏剝重剝的出現(xiàn)比較小,因此,脫凈率相對較高。1.3 花生脫殼機的應(yīng)用現(xiàn)狀與未來發(fā)展趨勢1.3.1 花生脫殼機的應(yīng)用現(xiàn)狀介紹目前,市場上的花生脫殼設(shè)備的種類繁多,在設(shè)備結(jié)構(gòu)組成、型號特點、功率大小等都是各具特點的,其采用的脫殼原理也是從單一到多種方式相結(jié)合的,基本上可以滿足各類花生脫殼加工、分選、復(fù)脫、分級等多種工序。圖1.2所示為國內(nèi)成熟的兩款花生脫殼機。目前,已在使用的花生脫殼機是各具特色的花生脫殼機,均是20世紀(jì)七八十年代引進、改造出來的產(chǎn)品,也就是具有一定脫殼效率,基本上能夠滿足勞動者對花生脫殼要求。對于小型家用脫殼機械多數(shù)的應(yīng)用于廣大農(nóng)村,脫殼機的脫殼效率較低,性能不是非常穩(wěn)定度,存在花生仁的損傷率大等問題。(A)(B)圖1.3典型的花生脫殼機對于那些要求比較的花生種子脫殼,其對破損率有嚴(yán)格要求,現(xiàn)有的脫殼機械也比較難滿足的。因此,針對現(xiàn)有花生脫殼設(shè)備的應(yīng)用與發(fā)展現(xiàn)狀,分析各類脫殼機的脫殼原理、結(jié)構(gòu)組成及存在的問題進行優(yōu)化改進。1.3.2 未來發(fā)展趨勢進入21世紀(jì),隨著工業(yè)技術(shù)的飛速發(fā)展,我國花生生產(chǎn)加工機械化進入了新發(fā)展階段,為花生種植、收獲、加工、等機械化提供發(fā)展條件?;ㄉ摎C設(shè)備的研發(fā)與優(yōu)化重點集中在如下方面:1)提高花生脫殼機械的通用性和兼容性,使用過程中僅僅變換脫殼機主要的執(zhí)行工作部件,就能滿足不能種類、不同粒度的物料的脫殼加工。2)即通過對脫殼機的脫殼原理與關(guān)鍵部件的結(jié)構(gòu)、材料應(yīng)用進行重點攻關(guān),提高機械脫殼率,降低破損率。3) 提高脫殼設(shè)備的脫殼自動控制與自動化方向。通過機電一體化技術(shù)的應(yīng)用,開發(fā)設(shè)計出具有自動喂料、自動定位脫殼裝置,保證均勻喂料,實現(xiàn)機組自動化操作,提高作業(yè)精確性和作業(yè)速度。2. 花生脫殼機的整體結(jié)構(gòu)方案與工作原理2.1本設(shè)計中的脫殼原理經(jīng)過對市場上現(xiàn)有的花生脫殼機進行調(diào)研分析,確定本次課題設(shè)計一款封閉木質(zhì)滾筒式花生剝殼機。即剝殼部件是在一個圓筒上鑲上若干齒形筋條,下部與半圓形型柵條式凹板配合,且滾筒外徑與半籠柵圓周進行控制在30-38mm,如圖1-1所示。工作時,花生莢果在重力作用下,進入到脫殼機構(gòu)箱體內(nèi),在高速回轉(zhuǎn)滾筒的離心力作用下由進口向出口端運動,此時,花生莢果在滾筒和柵條凹板的揉搓、擠壓、摩擦綜合效應(yīng)下,完成強制裂縫、脫殼。圖 2-1 脫殼原理示意圖在脫殼時,與柵條縫尺寸相同或小于柵條間隙的花生顆粒就直接從柵縫中分離出來,這就造成一次性脫殼率較低。為保證脫殼率要求,可以通過更換柵條凹板部件來改變滾筒與凹板之間的間隙,或者將半籠型凹板的柵條間隙,針對與普通花生顆粒,柵條間隙去9mm-13mm。另外,脫殼機需要配置花生仁和未脫果分離的裝置。2.2花生脫殼機的總體結(jié)構(gòu)根據(jù)前面的剝殼原理可知,花生脫殼的過程是:物料首先從進料斗進入到剝殼箱之內(nèi),經(jīng)過滾筒及柵格,從下箱的出口流出,為實現(xiàn)花生殼與仁的分離,需要設(shè)置比重分選篩裝置,最后花生仁在重力作用下進入到收集斗中。滾筒式脫殼機構(gòu)是本設(shè)計中最為重要的機構(gòu),我將在本文第三章中重點進行設(shè)計。因花生進度到剝殼箱內(nèi)之后,花生經(jīng)過高速回轉(zhuǎn)的滾筒與柵條之間的撞擊和擠壓作用,花生莢果被強制裂縫、剝殼,然后經(jīng)過位于剝殼箱底部的柵格,柵格直接設(shè)計成一個側(cè)面封閉的半籠柵,它是通過螺栓固定安裝在剝殼箱的下半箱之內(nèi)。如果花生在下落過程中沒有與輥筒外圓周的齒輪發(fā)生接觸碰撞,或者是發(fā)生接觸了花生僅出現(xiàn)裂紋但是沒有完全殼、仁分離,此時,這部分花生將直接落入到半籠柵格上,在下一個轉(zhuǎn)子旋轉(zhuǎn)周期上輥筒旋轉(zhuǎn)外徑與柵格頂部間的間距因不足以容納一個完整花生果,因此花生果將再次受到輥筒齒型的擠壓而被壓碎。圖2-2 滾筒式破碎機結(jié)構(gòu)組成原理圖如圖2.2所示,封閉式滾筒脫殼機主要由進料機構(gòu)、剝殼機構(gòu)、分選機構(gòu)和機架支承機構(gòu)等部分組成。脫殼機的驅(qū)動源采用一個電機提供動力,經(jīng)帶傳動道滾筒脫殼裝置;比重分選的篩分裝置采用偏心輪機構(gòu),動力直接由滾筒主軸經(jīng)帶傳動到分選篩分裝置主軸。為保證脫殼整機的各部件安裝要求,本機設(shè)計采用矩形鋼管型材焊接的機架,起到支承、定位、連接作用,驅(qū)動電機安裝在機架下部。2.3 殼仁分離裝置殼仁分離裝置的實現(xiàn)分離的基本原理是利用花生殼、花生仁的重量及受力面積的不同,重量稍重的不被風(fēng)吹走,而重量較輕的花生殼將被風(fēng)機吹來的氣流帶入到花生殼收集通道,用氣流對其進行分離。重量稍重的不被氣流吹走,直接下落到花生仁收集通道,落入比重分選篩上,然后比重分選篩運行。3. 花生脫殼機關(guān)鍵部件的結(jié)構(gòu)設(shè)計3.1脫殼部件的設(shè)計3.1.1滾筒半徑及轉(zhuǎn)速初定本磁設(shè)計的是封閉式滾筒式脫殼機構(gòu),脫殼執(zhí)行裝置由一個圓筒型滾筒外部設(shè)置了齒輪打擊齒,下部與半圓形柵條凹板配合組成,如圖3.1所示。1.打擊齒 2.半籠柵圖3.1 脫殼裝置組成為保證高速回轉(zhuǎn)的滾筒與半圓柵條的撞擊、擠壓、揉搓作用下實現(xiàn)對花生的強制脫殼,這里需要設(shè)置合理的間隙,進籠側(cè)入口的間隙值一般取30-50mm,出籠側(cè)出口的間隙一般取10-15mm。滾筒的幾何形狀、尺寸及結(jié)構(gòu)形式需要與花生的尺寸箱匹配,同時轉(zhuǎn)子轉(zhuǎn)速和轉(zhuǎn)軸部件的邊界轉(zhuǎn)速需要避免出現(xiàn)頻率相近而使得脫殼機產(chǎn)生共振,造成脫殼設(shè)備產(chǎn)生附加振動及較大的噪音。滾筒的半徑與轉(zhuǎn)速確定依據(jù)為:滾筒旋轉(zhuǎn)必須確保能將進入的花生殼撞碎,經(jīng)過查閱相關(guān)資料,當(dāng)花生莢果與鋼性物體的相對速度約為3.5時,可以保證花生殼破碎而且可以保證花生仁的損壞率在98%以下。如圖3-2所示,花生下落點位置在之間,因此最小碰撞半徑為計算半徑: 整理得:取半徑R=170mm,則由因此本次設(shè)計的脫殼滾筒幾何尺寸與轉(zhuǎn)速初選為:R=170mm,n=395r/min圖3.2 滾筒截面圖確定滾筒圓周的齒輪的幾何參數(shù),如圖3.3所示,經(jīng)過統(tǒng)計測量數(shù)據(jù),花生莢果長為39.41mm,寬度尺寸為13.8mm,厚度尺寸為14.5mm。為保證滾筒在高速回轉(zhuǎn)中與半籠柵之間的能順利擠殼花生殼,且不損壞花生仁,這里滾筒齒輪的結(jié)合形狀如圖3.4所示,開口35mm,角度為60度。 圖3.3 花生外形參數(shù) 圖3.4 齒型槽幾何參數(shù)3.1.2脫殼機所需功率計算與電機選型根據(jù)功率計算公式:,需要先計算滾筒所需的功率;滾筒在高速回轉(zhuǎn)過程中對花生做功包含兩部分,動能與勢能之和, 上式:滾筒改變花生的動能;:滾筒改變花生的勢能 上式中 :花生果的初動能(J); 花生果的末動能(J); 花生果的初速度(m/s); 花生果地末速度(m/s); 這里設(shè)定花生脫殼機的額定單位脫殼產(chǎn)量為30kg/min,折合每秒產(chǎn)量為0.5kg/s?;ㄉ佑|滾筒齒槽板時的初速度設(shè)為1m/s,方向近似向下,當(dāng)滾筒旋轉(zhuǎn)一定角度后,花生離開滾筒的速度擬定達到15m/s,方向向左,脫離齒槽板時相對初位置高度降低了170mm。 代入計算得到:P=67W同時,需要計算滾筒與花生在柵格中擠壓所需要的能量,所需功率P遠小于500W。電機通過帶傳動到滾筒主軸,這里需要確定帶傳動與脫殼裝置之間的傳遞總效率。初設(shè)滾動軸承效率為、V帶傳動的效率為,則可以計算出總效率為 圖3.5 滾筒轉(zhuǎn)動示意圖(理論狀態(tài)下)考慮到本脫殼機的風(fēng)扇及重力篩分裝置的偏心輪裝置的動力源都是利用主軸驅(qū)動電機,這里需要充分預(yù)留一定功力,因此這里初選電動機的功率為1.5kW。根據(jù)前面計算所需的電機功率及滾筒的轉(zhuǎn)速,可選用的電機型號有兩種 :Y90L-4型和Y100L-6型,他們參數(shù)詳細見下表。表3-1 驅(qū)動電機的參數(shù)方案號電機型號額定功率kw同步轉(zhuǎn)速r/min滿載轉(zhuǎn)速r/min總傳動比 i1Y100L-61510009402.382Y90L-415150014003.65比較上述兩款電機,方案2傳動比稍微大點,但是電機價格低,適合于家用機械設(shè)備。Y90L-4型電機的中心高H為90mm,外伸軸徑為24mm,軸的外伸長度為50mm。3.1.3傳動裝置的傳動參數(shù)計算滾筒式花生去殼機的滾筒轉(zhuǎn)速已確定為,這里直接選用V帶傳動,保證傳動結(jié)構(gòu)簡單,安裝方案,設(shè)備的制造成本低。下面來計算系統(tǒng)的傳動比:滾筒軸的轉(zhuǎn)速:滾筒軸轉(zhuǎn)速為:傳動比:軸的輸入功率:軸的轉(zhuǎn)矩:上式中: 為滾筒軸的轉(zhuǎn)矩(N.m); 為滾筒軸的輸入功率(kw);3.1.4電機與脫殼轉(zhuǎn)子軸之間的V帶傳動設(shè)計電機型號:Y90L-4額定功率:1.5kw電機轉(zhuǎn)速:傳動比:=3.65假設(shè)脫殼機的工作時間:t23.74MPa,故主軸合格。3.2.4軸承的校核滾筒轉(zhuǎn)軸的軸承選擇用深溝球軸承,型號6206;由軸的校核可知:,徑向力 軸向力 , ,取沖擊載荷系數(shù) ,則 由于, 則按軸承2計算 顯然, ,故軸承壽命很充裕。3.3比重分選篩動力系統(tǒng)設(shè)計3.3.1比重分選篩裝置設(shè)計本設(shè)計中采用了平面型振動篩,驅(qū)動方式采用偏心輪機構(gòu)直接與振動篩下部的橫梁接觸驅(qū)動,在重力作用下,振動篩向下復(fù)位,其結(jié)構(gòu)如圖3.14所示。圖3.14 篩選裝置本設(shè)計采用大型的平面篩,其與圓筒篩相比,其具有更大的有效篩理面積。通過帶傳動將滾筒軸上的動能傳遞到偏心輪軸,將回轉(zhuǎn)運動轉(zhuǎn)變成篩體的往復(fù)振動,實現(xiàn)平面篩在垂直方向上作往復(fù)運動的振動。此花生脫殼機中所采用的是偏心輪機構(gòu)以作為比重分選篩的執(zhí)行機構(gòu),篩箱水平全振幅等于偏心距的2倍。圖3.15比重分選篩原理圖要求偏心輪的偏心距與兩支點之間的距離之比小于1/10,則可利用均勻旋轉(zhuǎn)的偏心輪促使振動篩子上任何一點都按簡諧運動規(guī)律沿自己的軌跡運動。3.3.2偏心輪轉(zhuǎn)軸設(shè)計這里輸出動力的主動輪是滾筒轉(zhuǎn)軸,其轉(zhuǎn)速為;從動軸偏心軸,初步確定其轉(zhuǎn)速為;軸的輸入功率: 軸的輸入轉(zhuǎn)矩: 1.初步確定軸的最小直徑選取軸材料為45鋼,調(diào)質(zhì)處理。計算軸的最小直徑,取, 這里取軸的最小徑為25mm。 圖3.16 偏心輪軸2.擬定軸上零件的裝配方案圖3.17 偏心軸裝配方案3.3.3偏心軸的V帶傳動設(shè)計對于滾筒轉(zhuǎn)軸與偏心軸之間的帶傳動設(shè)計,因前面已經(jīng)做 V帶傳動的設(shè)計,這里不做重復(fù)計算,盡在下表列出相關(guān)參數(shù)。 表3-7偏心軸與滾筒轉(zhuǎn)子軸間的V帶輪參數(shù) 單位:mm尺寸類型小帶輪大帶輪90330基準(zhǔn)寬度3030基準(zhǔn)線上槽深3.753.75基準(zhǔn)線下槽深1919槽間距e150.3150.3第一槽對稱面至端面距離f輪緣厚d1212帶輪寬B6040外徑120343輪槽角極限偏差孔徑2525輪轂長504280輪輻厚1020163504. 花生脫殼機的各部件設(shè)計與三維建模4.1 關(guān)鍵組件的設(shè)計與三維建模4.1.1半柵籠半柵籠的主要作用是與滾筒配合,實現(xiàn)對進入料斗內(nèi)的花生擠壓、撞擊,同時,柵條可以對已被剝殼花生與未被剝殼花生進行分離,即“小個通過,大個不過”。半柵籠的柵條間隙控制在13mm,每個柵格間隙只能通過一粒花生仁,因此,對于已被脫殼的花生可以穿過柵格,未被脫殼或已擠裂紋但沒有殼、仁分離花生莢果因為體積太大,無法通過柵格,將被阻擋在剝殼箱內(nèi),繼續(xù)進行剝殼直到其外殼破碎。半籠柵的三維結(jié)構(gòu)如圖4.1所示。圖4.1 半籠柵的三維半籠柵兩側(cè)面通過兩塊擋板對兩端進行固定的,組成半圓柵籠,擋板材料為Q235,柵條材料選用20鋼。柵條采用截面圓棒料,長度為635mm,為了防銹處理,需要對半籠柵表面整體進行滲碳處理,熱處理硬度HRC56-62。半柵籠的柵條間隙控制在10mm,每個柵格間隙只能通過一粒已脫殼的花生仁,而未剝殼的剛不能通過,可以對半柵籠的安裝采用浮動安裝,降低花生仁的破碎率,半柵籠內(nèi)徑為。4.1.2風(fēng)扇組件設(shè)計風(fēng)扇的作用是提高風(fēng)能將花生殼與仁進行分離,因為花生殼、花生仁的重量不同,且花生殼的受力面積大,通過風(fēng)扇作用,可以將重量較輕的花生殼將被風(fēng)機吹來的氣流帶入到花生殼收集處,用氣流對其進行分離。重量稍重的不被氣流吹走,直接下落到花生仁收集通道,落入比重分選篩上,然后比重分選篩運行。如圖4.2、4.3所示,風(fēng)扇組件由軸承座、帶輪、風(fēng)扇葉片及外罩組成。圖4.2 風(fēng)扇轉(zhuǎn)子三維圖4.3 風(fēng)扇外罩三維4.1.3箱體箱體構(gòu)成一個封閉的剝殼環(huán)境,它對滾筒轉(zhuǎn)子及半籠柵等構(gòu)起到支承。箱體尺寸直接根據(jù)滾筒轉(zhuǎn)軸部件的尺寸來決定的,如圖4.4所示,下箱體的三維模型圖,側(cè)面通過四個側(cè)耳與機架進行固定連接 。為了便于脫殼機滾筒部件的安裝和拆卸,這里將箱體做成剖分式的,分為上箱蓋和下箱體兩部分組成,剖分面設(shè)置在轉(zhuǎn)軸所在的中心線所在平面。上箱蓋和下箱體采用四個螺栓聯(lián)接,用圓錐銷定位。箱體材料選用Q235,焊接而成。圖4.4 下箱體的三維4.1.4料斗漏斗采用斜錐式漏斗,漏斗直接與上箱體焊接為一體,三維結(jié)構(gòu)如圖4.5所示。前面已估算當(dāng)喂料速率在30kg/min 時,這樣可以保證留在脫殼箱體的花生莢果較,莢果進入箱體之內(nèi)的阻滯作用小;使得莢果與滾筒的擠壓得以充分脫殼,花生莢果與旋轉(zhuǎn)滾筒齒型槽的接觸機會多,脫殼效率也高。如果進一步增加喂入量,則直接造成脫殼箱體內(nèi)的物料量增加,花生莢果之間的擠壓摩擦也增大,因脫殼室內(nèi)存留物料過多,花生仁、殼在阻礙作用下 ,不能及時排出脫殼室 ,導(dǎo)致果仁破碎率和損傷率增加 。圖4.5 料斗三維4.1.5振動篩的箱體振動篩的箱體是振動篩分的框架部件,它與篩網(wǎng)配合,將篩選出的花生仁收集。箱體下部橫梁直接與偏心輪接觸,通過帶傳動將滾筒軸上的動能傳遞到偏心輪軸,將回轉(zhuǎn)運動轉(zhuǎn)變成篩體的往復(fù)振動,實現(xiàn)平面篩在垂直方向上作往復(fù)運動的振動。振動篩箱體與機架通過銷釘相聯(lián),通過偏心輪與機架相聯(lián)從而產(chǎn)生比重分選篩的振動效果。箱體的材料選用Q235,板材焊接成型。具體結(jié)構(gòu)如圖4.6所示。圖4.6 振動篩箱體4.1.5篩網(wǎng)本設(shè)計采用大型的平面篩,其與圓筒篩相比,其具有更大的有效篩理面積。通過帶傳動將滾筒軸上的動能傳遞到偏心輪軸,將回轉(zhuǎn)運動轉(zhuǎn)變成篩體的往復(fù)振動,實現(xiàn)平面篩在垂直方向上作往復(fù)運動的振動。根據(jù)粒度的不同,篩面的材料和安裝方式也是存在差異的。針對花生仁粒度小于15 mm,篩面直接選擇中等硬度的篩面。軟質(zhì)篩網(wǎng)的安裝多采用張緊鉤式的,篩網(wǎng)的兩端固定有張緊鉤。篩網(wǎng)的材料為鋼絲編織篩網(wǎng),篩分效果最好,花生因自重較小故對它的損壞較小,使用壽命較長。篩網(wǎng)部件如圖4.7所示。圖4.7 篩網(wǎng)4.1.6機架花生脫殼機的機架采用截面為50*50mm矩形鋼管焊接而成,機架的作用的支承與定位滾筒部件,連接箱體、料斗、偏心輪軸等部件的作用,并將電機安裝在機架里面,各部件的聯(lián)接采用普通螺栓聯(lián)接。如圖4.8所示。圖4.8 脫殼機的機架三維4.2 脫殼機的三維建模與裝置檢查滾筒式花生脫殼機的三維裝配圖如圖4.9所示。圖4.9 滾筒式花生脫殼機的三維裝配花生脫殼機的設(shè)計采用自下而上的建模設(shè)計方案,首先根據(jù)脫殼產(chǎn)量初步確定滾筒直徑及長度,確定滾筒轉(zhuǎn)速,在此基礎(chǔ)上對各關(guān)鍵的轉(zhuǎn)軸部件、 半籠柵、箱體、機架和風(fēng)機等部件單獨建模設(shè)計,然后在對各組件裝配起來。圖4.10為脫殼機三維模型的主視圖,將完成虛擬裝配的三維模型進行干涉檢查分析,平面剖切分析,分析各零部件中不合理結(jié)構(gòu),通過干涉檢查發(fā)現(xiàn)各零部件尺寸不正確的地方。另外,也可以通過運動仿真分析,演示脫殼機各部件的動態(tài)過程。圖4.10 脫殼機三維模型的主視圖5.結(jié)論本文首先花生脫殼機的脫殼原理,應(yīng)用現(xiàn)狀及現(xiàn)在市場上應(yīng)用的個脫殼機存在的問題進行調(diào)研分析,針對其問題進行了分析。根據(jù)設(shè)計要求及花生脫殼機的功能要求,確定了花生脫殼機的總體方案的設(shè)計,以封閉式滾筒脫殼機為研究對象,對脫殼機的關(guān)鍵脫殼部件、進料機構(gòu)、振動篩分選機構(gòu)和偏心輪機構(gòu)等部分進行詳細設(shè)計與三維建模分析。最后對本次設(shè)計心得體會與成果進行的總結(jié)。在設(shè)計過程中,從分析課題,搜集相關(guān)材料,閱讀并綜述相關(guān)資料以及設(shè)計計算等過程有了清晰的思路。我通過查閱大量有關(guān)資料,與同學(xué)交流經(jīng)驗,向老師請教,使自己培養(yǎng)了我獨立工作的能力,樹立了對自己工作能力的信心,相信會對今后的學(xué)習(xí)工作生活有非常重要的影響。致謝在本論文完成的最后,我要衷心的感謝我的指導(dǎo)老師,感謝老師對我的悉心指導(dǎo)和幫助。感謝同組同學(xué)對我的論文提供的幫助。感謝這些年來父母對我的養(yǎng)育之恩,是他們?yōu)槲业慕】党砷L提供了良好的條件。參考文獻5 楊帥,鄒智慧.多自由度工業(yè)機器人運動控制系統(tǒng)的研究J.制造業(yè)自動化,2013, 1 高學(xué)梅, 胡志超, 謝煥雄, 等. 打擊揉搓式花生脫殼機脫殼性能影響因素探析J. 花生學(xué)報, 2011, 40(3): 3034.2 朱立學(xué), 羅錫文, 劉少達. 軋輥-軋板式銀杏脫殼機的優(yōu)化設(shè)計與試驗J. 農(nóng)業(yè)工程學(xué)報, 2008, 24(8): 139142.3 吉平, 陳杰. 沙棘籽脫殼方法及裝置的試驗研究J. 農(nóng)業(yè)工程學(xué)報, 1999, 15(4): 258263.4 高夢祥, 郭康權(quán), 楊中平, 等. 玉米秸稈的力學(xué)特性試驗研究J.農(nóng)業(yè)機械學(xué)報, 2003, 34(4): 4749, 52.5 王延耀, 張巖. 氣爆式花生脫殼性能的試驗研究J. 農(nóng)業(yè)工程學(xué)報, 1998, 14(1): 222227.6 國家發(fā)展和改革委員會. 花生剝殼機 試驗方法 (JB/T 5688.2 2007)S. 北京: 機械工業(yè)出版1 高學(xué)梅, 胡志超, 謝煥雄, 等 打擊揉搓式花生脫殼機脫殼性能影響因素探析J 花生學(xué)報, 2011 , 40(3 ) : 30 342 喻 杰, 包秀輝 常用花生脫殼機的分析研究J 農(nóng)業(yè)科技與裝備, 2009(1 ) : 114 115, 1183 劉明國 , 杜 鑫, 程獻麗, 等 花生脫殼機械化對遼寧省花生產(chǎn)業(yè)的影響J 農(nóng)機化研究, 2010, 32(10) : 222 2254 李建東, 尚書旗, 李西振, 等 我國花生脫殼機械研究應(yīng)用現(xiàn)狀及進展J 花生學(xué)報, 2006, 35(4) : 23 275 李建東 花生脫殼裝置的試驗研究D 青島: 青島農(nóng)業(yè)大學(xué),2007: 3 56 李心平, 馬福麗, 高連興 花生脫殼裝置的結(jié)構(gòu)技術(shù)剖析J 農(nóng)機化研究, 2010(3 ) : 18 207 謝煥雄, 彭寶良, 張會娟, 等 我國花生脫殼技術(shù)與設(shè)備概況及發(fā)展J 江蘇農(nóng)業(yè)科學(xué), 2010(6) : 581 5828 劉紅力 花生脫殼特性與損傷機理研究D 沈陽 : 沈陽農(nóng)業(yè)大學(xué), 2007: 18 229 楊國新, 王定標(biāo) 基于 SolidWorks 的機械零部件虛擬裝配體設(shè)計技術(shù)J 煤礦機械, 2007,Int J Adv Manuf Technol (2005) 25: 551559DOI 10.1007/s00170-003-1843-3ORIGINAL ARTICLES.H. Masood B. Abbas E. Shayan A. KaraAn investigation into design and manufacturing of mechanical conveyors systemsfor food processingReceived: 29 March 2003 / Accepted: 21 June 2003 / Published online: 23 June 2004 Springer-Verlag London Limited 2004Abstract This paper presents the results of a research investi-gation undertaken to develop methodologies and techniques thatwill reduce the cost and time of the design, manufacturing andassembly of mechanical conveyor systems used in the food andbeverage industry. The improved methodology for design andproduction of conveyor components is based on the minimisa-tion of materials, parts and costs, using the rules of design formanufacture and design for assembly. Results obtained on a testconveyor system verify the benets of using the improved tech-niques. The overall material cost was reduced by 19% and theoverall assembly cost was reduced by 20% compared to conven-tional methods.Keywords Assembly Cost reduction Design DFA DFM Mechanical conveyor1 IntroductionConveyor systems used in the food and beverage industry arehighly automated custom made structures consisting of a largenumber of parts and designed to carry products such as foodcartons, drink bottles and cans in fast production and assemblylines. Most of the processing and packaging of food and drink in-volve continuous operations where cartons, bottles or cans are re-quired to move at a controlled speed for lling or assembly oper-ations. Their operations require highly efcient and reliable me-chanical conveyors, which range from overhead types to oor-mounted types of chain, roller or belt driven conveyor systems.In recent years, immense pressure from clients for low costbut efcient mechanical conveyor systems has pushed con-veyor manufacturers to review their current design and assemblymethods and look at an alternative means to manufacture moreeconomical and reliable conveyors for their clients. At present,S.H. Masood (u) B. Abbas E. Shayan A. KaraIndustrial Research Institute Swinburne,Swinburne University of Technology,Hawthorn, Melbourne 3122, AustraliaE-mail: smasoodswin.edu.aumost material handling devices, both hardware and software, arehighly specialised, inexible and costly to congure, install andmaintain 1. Conveyors are xed in terms of their locations andthe conveyor belts according to their synchronised speeds, mak-ing any changeover of the conveyor system very difcult and ex-pensive. In todays radically changing industrial markets, there isa need to implement a new manufacturing strategy, a new systemoperational concept and a new system control software and hard-ware development concept, that can be applied to the design ofa new generation of open, exible material handling systems 2.Ho and Ranky 3 proposed a new modular and recongurable2D and 3D conveyor system, which encompasses an open re-congurable software architecture based on the CIM-OSA (opensystem architecture) model. It is noted that the research in thearea of improvement of conveyor systems used in beverage in-dustry is very limited. Most of the published research is directedtowards improving the operations of conveyor systems and inte-gration of system to highly sophisticated software and hardware.This paper presents a research investigation aimed at im-proving the current techniques and practices used in the de-sign, manufacturing and assembly of oor mounted type chaindriven mechanical conveyors in order to reduce the manufactur-ing lead time and cost for such conveyors. Applying the con-cept of concurrent engineering and the principles of design formanufacturing and design for assembly 4, 5, several criticalconveyor parts were investigated for their functionality, materialsuitability, strength criterion, cost and ease of assembly in theoverall conveyor system. The critical parts were modied andredesigned with new shape and geometry, and some with newmaterials. The improved design methods and the functionality ofnew conveyor parts were veried and tested on a new test con-veyor system designed, manufactured and assembled using thenew improved parts.2 Design for manufacturing and assembly (DFMA)In recent years, research in the area of design for manufacturingand assembly has become very useful for industries that are con-552sidering improving their facilities and manufacturing methodol-ogy. However, there has not been enough work done in the areaof design for conveyor components, especially related to the is-sue of increasing numbers of drawing data and re-engineeringof the process of conveyor design based on traditional methods.Emphasise standardisationUse the simplest possible operationsUse operations of known capabilityMinimise setups and interventionsUndertake engineering changes in batchesA vast amount of papers have been published that have investi-gated issues related to DFMA and applied to various methodolo-gies to achieve results that proved economical, efcient and costeffective for the companies under investigation.The main classications of DFMA knowledge can be iden-tied as (1) General guidelines, (2) Company-specic best prac-tice or (3) Process and or resource-specic constraints. Generalguidelines refer to generally applicable rules-of-thumb, relat-ing to a manufacturing domain of which the designer shouldbe aware. The following list has been compiled for DFMguidelines 6.These design guidelines should be thought of as “optimalsuggestions”. They typically will result in a high-quality, low-cost, and manufacturable design. Occasionally compromisesmust be made, of course. In these cases, if a guideline goesagainst a marketing or performance requirement, the next bestalternative should be selected 7.Company-specic best practice refers to the in-house designrules a company develops, usually over a long period of time, andwhich the designer is expected to adhere to. These design rulesare identied by the company as contributing to improved qualityand efciency by recognising the overall relationships betweenDesign for a minimum number of partsDevelop a modular designMinimise part variationsDesign parts to be multifunctionalDesign parts for multiuseDesign parts for ease of fabricationAvoid separate fastenersMaximise compliance: design for ease of assemblyMinimise handling: design for handling presentationEvaluate assembly methodsEliminate adjustmentsAvoid exible components: they are difcult to handleUse parts of known capabilityAllow for maximum intolerance of partsUse known and proven vendors and suppliersUse parts at derated values with no marginal overstressMinimise subassembliesparticular processes and design decisions. Companies use suchguidelines as part of the training given to designers of productsrequiring signicant amounts of manual assembly or mainte-nance. Note that most of the methodologies are good at eitherbeing quick and easy to start or being more formal and quanti-tative. For example, guidelines by Boothroyd and Dewhurst 8on DFA are considered as being quantitative and systematic.Whereas the DFM guidelines, which are merely rules of thumbderived from experienced professionals, are more qualitative andless formal 9.3 Conventional conveyor system designDesign and manufacturing of conveyor systems is a very com-plex and time-consuming process. As every conveyor system isa custom-made product, each project varies from every otherproject in terms of size, product and layout. The system designFig. 1. Layout of conveyor sys-tem for labelling plasic bottles553is based on client requirements and product specications. More-over, the system layout has to t in the space provided by thecompany. The process of designing a layout for a conveyor sys-tem involve revisions and could take from days to months or insome instances years. One with the minimum cost and maximumclient suitability is most likely to get approval.Figure 1 shows a schematic layout of a typical conveyorsystem installed in a production line used for labelling ofplastic bottles. Different sections of the conveyor system areidentied by specic technical names, which are commonlyused in similar industrial application. The “singlizer” sec-tion enables the product to form into one lane from multiplelanes. The “slowdown table” reduces the speed of productonce it exits from ller, labeller, etc. The “mass ow” sec-tion is used to keep up with high-speed process, e.g., ller,labeller, etc. The “transfer table” transfers the direction of prod-uct ow. The purpose of these different conveyor sections isthus to control the product ow through different processingmachines.A typical mechanical conveyor system used in food and bev-erage applications consists of over two hundred mechanical andelectrical parts depending on the size of the system. Some ofthe common but essential components that could be standard-ised and accumulated into families of the conveyor system areside frames, spacer bars, end plates, cover plates, inside bendplates, outside bend plates, bend tracks and shafts (drive, tail andslave). The size and quantity of these parts vary according to thelength of conveyor sections and number of tracks correspond-ing to the width and types of chains required. The problems andshortcomings in the current design, manufacturing and assemblyof mechanical conveyors are varied, but include:4 Areas of improvementIn order to identify the areas of cost reduction in material andlabour, a cost analysis of all main conveyor parts was conductedto estimate the percentage of cost of each part in relation to thetotal cost of all such parts. The purpose of this analysis was toidentify the critical parts, which are mainly responsible for in-creasing the cost of the conveyor and thereby investigate meansfor reducing the cost of such parts.Table 1 shows the cost analysis of a 50-section conveyor sys-tem. The analysis reveals that 12 out of 15 parts constitute 79%of the total material cost of the conveyor system, where furtherimprovements in design to reduce the cost is possible. Out ofthese, seven parts were identied as critical parts (shown by anasterisk in Table 1) constituting maximum number of compo-nents in quantity and comprising over 71% of overall materialcost. Among these, three components (leg set, side frame andsupport channel) were found to account for 50% of the totalconveyor material cost. A detailed analysis of each of these 12parts was carried out considering the principles of concurrent en-gineering, design for manufacture and design for assembly, anda new improved design was developed for each case 10. De-tails of design improvement of some selected major componentare presented below.5 Redesign of leg set assemblyIn a conveyor system, the legs are mounted on the side frame tokeep the entire conveyor system off the oor. The existing designof conveyor legs work, but they are costly to manufacture, theyOver design of some partsHigh cost of some componentsLong hours involved in assembly/maintenanceUse of non-standard partshave stability problems, and cause delays in deliveries. The delayis usually caused by some of the parts not arriving from over-seas suppliers on time. The most critical specications requiredfor the conveyor legs are:Table 1. Conveyor critical parts based on parts cost analysisProduct descriptionLeg setSide frameSupport channelBend tracksRt. roller shaftTail shaftSpacer barSupport wear stripSupport side wear stripEnd plateCover plateBend platesTorque arm bracketSlot coverInside bend plateQty68804008139391354001323939818978Material usedPlastic leg + SS tube2.5 mm SSC channel SSPlastic20 dia. SS shaft35 dia. Stainless steel50X50X6 SS40 10 mm plasticPlastic2.5 mm/SS1.6 mm S/S2.5 mm/SS6 mm S/S plateStainless steel2.5 mm/SSCost (%)20.2216.0715.0014.366.706.275.435.363.011.881.571.291.210.970.66Improvement possible (Yes/No)YesYesYesNoYesNoYesYesYesYesNoYesYesYesYesTotalCriticalparts100.00554Strength to carry conveyor loadStabilityEase of assemblyEase of exibility (for adjusting height)1 and part 3 in Fig. 2) was not rigid enough. The connectionsfor these parts are only a single 6 mm bolt. At times, when theconveyor system was carrying full product loads, it was observedthat the conveyor legs were unstable and caused mechanical vi-bration. One of the main reasons for this was due to a single boltFigure 2 indicates all the parts for the existing design ofthe conveyor leg. The indicated numbers are the part numbersdescribed in Table 2, which also shows a breakdown of cost an-alysis complete with the labour time required to assemble a com-plete set of legs. The existing leg setup consists of plastic legbrackets ordered from overseas, stainless steel leg tubes, whichare cut into specied sizes, leg tube plastic adjustments, whichare clipped onto the leg tube at the bottom as shown in Fig. 2.Lugs, which are cut in square sizes, drilled and welded to the legtube to bolt the angle cross bracing and backing plate to supportleg brackets bolts. The # of parts in Table 2 signies the numberof components in each part number and the quantity is the con-sumption of each part in the leg design. Companies have usedthis design for many years but one of the common complaintsreported by the clients was of the instability of legs.From an initial investigation, it became clear that the connec-tion between the stainless steel tube and plastic legs bracket (partFig. 2. Existing leg design assembly with partnames shown in Table 1Table 2. Cost analysis for old leg design assemblyconnection at each end of the lugs in part 3 and part 7. The sta-bility of the conveyor is considered critical matter and requiresrectication immediately to satisfy customer expectations.Considering the problems of the existing conveyor leg de-sign and the clients preferences, a new design for the conveyorleg was developed. Generally the stability and the strength ofthe legs were considered as the primary criteria for improve-ment in the new design proposal but other considerations werethe simplicity of design, minimisation of overseas parts and easeof assembly at the point of commissioning. Figure 3 shows, thenew design of the conveyors leg assembly, and Table 3 gives adescription and the cost of each part.Figure 3 shows that the new design consists of only ve mainparts for the conveyors leg compared to eight main parts in theold design. In the old design, the plastic leg bracket, the legtube plastic adjustment and the leg tube were the most expensiveitems accounting for 72% of the cost of leg assembly. In the newPart no.15, 647238Part descriptionPlastic leg bracketLeg tube plastic adjustmentLugAngle cross bracingBacking plateLeg tubeBolts# of parts2421226Qty2221226Cost$ 30.00$ 28.00$ 4.00$ 5.00$ 4.00$ 25.00$ 3.00SourceOverseasOverseasIn-houseIn-houseIn-houseIn-houseIn-houseTotal assembly cost (welding)$ 15.00In-houseTotal1917$ 114.00555Fig. 3. New design for leg assembly with partnames in Table 3Table 3. Cost analysis for new design leg assemblyPart no.13452Part descriptionStainless steel angle (50 50 3 mm)Leg plastic adjustmentCross brassingBoltsBacking plate# of parts22182Qty22142Cost$ 24.00$ 10.00$ 7.00$ 4.00$ 4.00SourceIn-houseOverseasIn-houseIn-houseIn-houseTotal assembly cost$ 10.00In-houseTotaldesign, those parts have been replaced by a stainless steel angleand a new plastic leg adjustment reducing the cost of leg assem-bly by almost 50%. Thus the total numbers of parts in the leghave been reduced from 19 to 15 and the total cost per leg setup1511Size of side frame (depth)Strength of the materialEase for assemblyEase for manufacturing$ 59.00has been reduced by $ 55 in the new design.The new conveyor leg design, when tested, was found to bemore secure and stable than the old design. The elimination ofpart number 1 and 5 from old conveyor design has made the newdesign more stable and rigid. In addition, the width of the crossbracing has also been increased with two bolts mount instead ofone in old design. This has provided the entire conveyor leg setupan additional strength.6 Redesign of the side framesThe side frame is the primary support of a conveyor systemthat provides physical strength to conveyors and almost all theparts are mounted on it. The side frame is also expected to havea rigid strength to provide support to all the loads carried onthe conveyor. It also accommodates all the associated conveyorcomponents for the assembly. The critical considerations of sideframe design are:Figure 4 shows the side frame dimension and parameters.The side frame used in existing design appears to be of rea-sonable depth in size (dimension H in Fig. 4). From the initialinvestigation, it was found that the distance between spacer barholes and return shaft (dimensions G and F in Fig. 4) could bereduced, as there was some unnecessary gap between those twocomponents. The important point to check before redening thedesign parameters was to make sure that after bringing those twocloser, the return chains would not catch the spacer bar while theconveyor is running. The model of the new side frame design wasdrawn on CAD to ensure all the specications are sound and theparts are placed in the position to check the clearances and thets. Using the principle of design for manufacturing the new sideframe design was made symmetrical so that it applies to all typesof side frames. This change is expected to reduce the size of sideframe signicantly for all sizes of chains.Table 4 shows a comparison of dimensions in the old designand the new design of side frames for the same chain type. It556Fig. 4. Side frame dimensionsTable 4. New and old side frame dimension parametersOld designChain type3.25 LF/SSSTR/LBP/MAGA31B92C71D196E65F105G211H241I136J58K85L196TAB2283621875696202232127New designChain type3.25 LF/SSSTR/LBP/MAG/TABA31B100C73D173E67F107G167H199I92J58K85L152is noted that the overall size (depth) of the conveyor has beenreduced from 241 mm to 199 mm (dimension H), which givesa saving of 42 mm of stainless steel on every side frame manu-factured. Thus, from a stainless steel sheet 1500 3000 mm, theold design parameter
收藏