3090型直線振動(dòng)篩結(jié)構(gòu)設(shè)計(jì)【說(shuō)明書(shū)+CAD+SOLIDWORKS】
3090型直線振動(dòng)篩結(jié)構(gòu)設(shè)計(jì)【說(shuō)明書(shū)+CAD+SOLIDWORKS】,說(shuō)明書(shū)+CAD+SOLIDWORKS,3090型直線振動(dòng)篩結(jié)構(gòu)設(shè)計(jì)【說(shuō)明書(shū)+CAD+SOLIDWORKS】,直線,振動(dòng)篩,結(jié)構(gòu)設(shè)計(jì),說(shuō)明書(shū),仿單,cad,solidworks
附錄
A virtual experiment showing single particle motion on a linearly vibrating screen-deck
ZHAO Lala , LIU Chusheng, YAN Junxia
School of Mechanical and Electrical Engineering, China University of Mining & Technology, Xuzhou 221008, China
1 Introduction
Vibration screening is a complicated process used in the mineral processing area that is affected by the vibration and other technical parameters of the screen and by the processed material's properties. The motion of the material on the screen deck has a direct relation to the quality of the screening process. Factors such as the penetration probability of the particles and the productivity of the apparatus are important. So investigating the theory of motion and the properties of the screened materials is of great significance for choosing reasonable kinematic parameters that ensure an effective screening process.
The sieving experiment forms the foundation of screening theory. The traditional experimental methods have the disadvantages of being complex to operate, being easily influenced by outside conditions and being difficult to carry out accurately in small scale. Virtual experimental technology, on the other hand, has the advantages of low cost, of having no limits in the field related to the available time and number of tests and of affording the simulation of complex processes. Virtual techniques have been widely applied in studies within military, medical and industrial fields.
We describe a virtual screening experimental system built upon physical simulation principles. The motion of a single particle on a linearly vibrating screen deck was studied. The influences of kinematic parameters on the state of motion were discussed. These results could provide a reference for the convenient study of vibrating screen theory and sieving practice.
2 Theory of linear motion on a vibrating screen
Different kinematic parameters, such as the vibration frequency, f, the amplitude, λ, the inclination angle of the screen plate, a0, or the direction angle of vibration, δ, may be changed to affect the motion of material on the screen deck. A motion that is static, positively sliding, negatively sliding or throwing can be obtained. The throwing motion provides good segregation performance, good screening and higher sieving efficiency and productivity. Hence, a throwing motion is adopted for most vibrating screens.
Fig. 1 shows a kinematic model of a linear vibration screening process. The vibration motion is sinusoidal and linear. Its displacement is given by:
(1)
where λ is the amplitude of screen motion along the vibration direction, mm; ω the circular frequency of vibration, rad/s; t time, s; and φ the vibration phase angle, °.
Fig. 1 Kinematic model of a linear vibration screening process
We let the particle fall freely under the influence of gravity from its initial position until it hits the vibrating screen deck. The particle will then undergo a continuous throwing motion after elastic-plastic collisions with the vibration deck. Let the time of the i'th collision between the particle and the screen be ti and ignore the time required for the collision process itself. Then, based on the law of conservation of energy, the particle velocity along the normal direction of the screen deck after the collision is given by:
(2)
where δ is the direction angle of vibration, °; the y-direction velocity of the particle before the i'th collision, m/s; the screen deck velocity at the i'th collision, m/s; and e the elastic coefficient of restitution of the colliding particle.
Conservation of energy requires that the thrown height relative to the screen deck after the collision is:
(3)
where g is the gravitational acceleration constant, m/s2; and a0 the inclination angle of the screen deck, °. The theoretical average thrown height of the particle is then:
(4)
where n is the number of collisions of the particle. Because there is no collision along the screen deck direction (the x-direction) for the particle, the theoretical average throwing height of the particle is determined by:
(5)
where iD is the throwing coefficient; and D the throwing index.
3 Simulation and discussion
The situation for simulation of a single particle on a cylindrical-bar type linear vibrating screen deck is shown in Fig. 2a. A global coordinate system (unit: cm) was adopted and the center of the scene at ground level was set as the origin of the coordinate system. The initial position of the screen and of the particle is (0, 0, 15) and (-25, 0, 30), respectively. The screen deck area is 60 cm×30 cm, the screen aperture size (a) is 2 cm, the particle diameter (d) is 4 cm and the elastic coefficient of restitution (e) is 0.5. Fig. 2b shows the trajectory of the particle through space during the screening process.
Taking the trajectory in the z-direction as our research object, the influence of vibration frequency and amplitude, inclination angle of the screen deck and vibration direction angle on the average particle velocity and average throwing height will be discussed.
Fig. 2 Virtual experiment of a single particle sieving process
3.1 Effect of vibration frequency, f
The influence of frequency on the particle trajectory is shown in Fig. 3 for constant amplitude, inclination angle and vibration direction. The average velocity and throwing height are listed in Table 1 as a function of frequency.
Table 1 Influence of frequency on particle kinematics
f (Hz)
12
13
14
15
v (m/s)
0.2978
0.5458
0.2140
0.2056
Vd (m/s)
0.2849
0.3087
0.3324
0.3562
hz (cm)
26.4468
25.1961
26.4119
22.6399
Fig. 3 Influence of frequency on throwing trajectory
Note that the particle velocity initially increases as f decreases but then decreases for the final frequency increment. This is because increasing frequency of vibration causes the number of collisions between the particle and the screen deck to increase. The opportunity for random collisions then also increases and a "back-throwing" phenomenon after collision even appears. This causes an increase in the number of particle bounces and in the time spent to complete the screening process. When f is 13 Hz, the number of particle bounces is 6, the time spent to complete screening is the minimum value of 1.15 s and the particle average velocity is the maximum value of 0.5458 m/s. But when f is 15 Hz the particle bounces 16 times and the time spent to complete screening is the maximum value of 2.267 s. At this frequency both the average velocity and the average throwing height are at their minimum values.
An analysis of the results in Table 1 shows that the correlation coefficient for the vibration frequency versus the average velocity is 0.494 and that the coefficient is 0.725 for frequency versus the average throwing height. This indicates that frequency has a greater influence on the average throwing height and has no significant influence on the particle's average velocity. The highest average velocity and average throwing height is obtained when f is 13 Hz.
3.2 Effect of amplitude, λ
The influence of amplitude on the trajectory of a particle is shown in Fig. 4. The average velocity and average throwing height are listed in Table 2.
Fig. 4 Influence of amplitude on throwing trajectory
Fig. 4 and Table 2 show that an increase in X, which causes the relative velocity between the particle and the vibrating screen deck to increase, results in a gradual increase in the particle average velocity and height. The number of bounces decreases at the same time. These predictions are in reasonable agreement with related theories. When λ is 3.5 mm there are twenty bounces and the particle has low average velocity and height. The time needed to complete screening is the longest under this condition (2.417 s). As λ increases the incremental change in sieve time decreases as the time tends to about 1.6 s. And the particle average velocity and height increase rapidly when λ is 6.5 mm.
An analysis of the results in Table 2 gives a correlation coefficient between amplitude and average velocity of 0.793 and between amplitude and height of 0.924. This indicates that the amplitude has some influence on particle average velocity and a significant influence on the average thrown height. Hence, amplitude should be selected according to the properties of the screened material. For materials difficult to screen relatively larger amplitude should be used to simultaneously obtain higher average velocities and throwing heights.
Table 2 Influence of amplitude on particle kinematics
X (mm)
3.5
4.5
5.5
6.5
v (m/s)
0.2107
0.2088
0.2140
0.2977
vd (m/s)
0.2116
0.2417
0.3324
0.3929
hZ (cm)
19.4694
21.5484
26.4119
40.9729
h (cm)
19.7285
19.8357
21.9001
24.2023
3.3 Effect of screen-deck inclination angle, a0
The influence of deck inclination angle on the particle trajectory is shown in Fig. 5. The average velocity and height are listed in Table 3.
Fig. 5 Influence of screen-deck inclination angle on throwing trajectory
Fig. 5 and Table 3 show that as a0 increases the average velocity also increases and the number of collisions the particle undergoes decreases. The average height tends to decrease. When a0 is 0° the particle has twenty collisions with the screen and the average velocity is the minimum. The time needed to complete screening is then the longest (3 s). When a0 is 6° the average height of the particle is at its maximum value. For a0 equal to 9° the initial distance from the particle to the screen deck decreases and the relative velocity of the particle and screen deck is at a minimum, which causes a decrease in the thrown height.
Table 3 Influence of screen-deck inclination angle on particle kinematics
00 (°)
0
3
6
9
v (m/s)
0.2477
0.29167
0.2509
0.3169
Vd (m/s)
0.2954
0.3139
0.3324
0.3512
hz (cm)
21.5082
22.6978
26.4119
15.1523
h (cm)
18.44713
16.7279
21.9001
15.3953
Correlation coefficients from data in Table 3 relating screening deck inclination angle to average velocity or to average height are 0.644 and 0.697, respectively. Hence, the screen-deck inclination angle influences both particle average velocity and throwing height. When the screening deck inclination angle is 3°~6° high average velocity and high throw height can be obtained simultaneously.
3.4 Effect of vibration direction angle, δ
The effect of the angle of vibration the particle trajectory was also studied. Fig. 6 shows the trajectories. The average velocity and average height are listed in Table 4.
Fig. 6 Influence of vibration angle on throwing trajectory
Table 4 Influence of vibrating-direction angle on particle kinematics
S (°)
30
40
50
60
v (m/s)
0.3672
0.5293
0.2509
0.1903
vd (m/s)
0.4222
0.3831
0.3324
0.2716
hz (cm)
19.8286
22.5425
26.4119
48.2712
Fig. 6 and Table 4 show that the average height increases as δ increases but there is a decrease in the average velocity. When δ is 40°, the average particle suffers six collisions and the average velocity is the maximum. In this situation the time spent for complete screening is the shortest (1.067 s). When δ is 60° the particle has minimum average velocity and suffers eleven collisions. The time spent for completion of screening is at the maximum (2.15 s). The increase in the normal component of the screen deck velocity causes the relative velocity of the particle after collision to increase. Thus, the average height increases in amplitude and reaches a maximum.
From the data in Table 4 correlation coefficients for vibration direction angle versus average velocity and average throw-height may be found. They are 0.70 and 0.889 respectively. This indicates that direction angle, δ, influences particle average velocity and height. So, higher average velocity and throwing height may be simultaneously obtained by using a vibration angle of about 40°.
4 Conclusions
1) A single particle on the vibrating screen deck has a complicated motion. The particle motion during the sieving process can be described well using elastic-plastic collision theory.
2) The amplitude and the vibration direction angle have a great effect on the particle average velocity and the average throw height considered over the normal range of linear screen parameters. The vibration frequency and the inclination angle of the screen plate have a small influence. To obtain the ideal sieving effect for materials that are difficult to sieve the frequency and amplitude of vibration, the inclination angle of the screen plate and the vibration direction angle should be chosen as 13 Hz, 6.6 mm, 6° and 40°, respectively.
3) A virtual screening experiment based on physical simulation principles reflects the objective laws of the sieving process and can provide a simple and reliable means to study screening theory.
一個(gè)展示直線振動(dòng)篩篩板上單質(zhì)點(diǎn)運(yùn)動(dòng)情況的仿真實(shí)驗(yàn)
ZHAO Lala,LIU Chusheng,YAN Junxia
機(jī)電工程學(xué)院,中國(guó)礦業(yè)大學(xué),徐州 221008,中國(guó)
1 簡(jiǎn)介
振動(dòng)篩分是礦物加工領(lǐng)域的一個(gè)復(fù)雜過(guò)程,它受振動(dòng)情況、篩機(jī)的技術(shù)參數(shù)和物料的性質(zhì)影響。篩分過(guò)程的效率直接影響物料在篩板上的運(yùn)動(dòng)狀態(tài)。物料穿透概率和篩機(jī)的效率是很重要的影響因素。因此,研究運(yùn)動(dòng)理論和物料的性質(zhì)具有重要意義,是選擇合理的運(yùn)動(dòng)學(xué)參數(shù),確保有效篩分的重要過(guò)程。
篩分實(shí)驗(yàn)是篩分理論的基礎(chǔ)。傳統(tǒng)的實(shí)驗(yàn)方法有難以比較結(jié)果、容易被外界因素影響和難以取得精確數(shù)值的缺點(diǎn),而仿真實(shí)驗(yàn)技術(shù)則有實(shí)驗(yàn)費(fèi)用低、沒(méi)有場(chǎng)地、時(shí)間以及實(shí)驗(yàn)次數(shù)限制,能夠?qū)?fù)雜過(guò)程進(jìn)行仿真等優(yōu)點(diǎn)。仿真技術(shù)現(xiàn)在被廣泛用于軍事、醫(yī)藥和工業(yè)領(lǐng)域的研究。
我們基于物理仿真理論建立了一個(gè)仿真篩分實(shí)驗(yàn)系統(tǒng),用于研究直線振動(dòng)篩篩板上單質(zhì)點(diǎn)的運(yùn)動(dòng)狀態(tài), 質(zhì)點(diǎn)運(yùn)動(dòng)的動(dòng)力學(xué)參數(shù)的影響同樣被考慮了。本研究的結(jié)果可以為振動(dòng)篩理論和篩分實(shí)踐的研究提供方便。
2 振動(dòng)篩上物料的直線運(yùn)動(dòng)理論
不同的運(yùn)動(dòng)學(xué)參數(shù),例如振動(dòng)頻率,f,振幅,λ,篩面傾角,a0,振動(dòng)方向角,δ,的改變可能影響篩面上物料的運(yùn)動(dòng)狀態(tài)。我們改變參數(shù)就能夠得到完全靜止、絕對(duì)滑行和絕對(duì)拋擲三種物料運(yùn)動(dòng)狀態(tài)。拋擲運(yùn)動(dòng)狀態(tài)能夠使物料有效地分離,為振動(dòng)篩提供更高的篩分效率和生產(chǎn)率,所以大部分振動(dòng)篩都采用了拋擲的方式。
圖1顯示了一個(gè)直線振動(dòng)篩分過(guò)程的運(yùn)動(dòng)學(xué)模型,可以看出振動(dòng)運(yùn)動(dòng)的軌跡是線性和正弦曲線的。其位移由下式給出:
(1)
式中λ振動(dòng)方向的振幅,mm;ω振動(dòng)的角頻率,rad/s;t 時(shí)間,s;φ振動(dòng)相位角,°。
圖1 直線振動(dòng)篩分過(guò)程的運(yùn)動(dòng)學(xué)模型
我們讓質(zhì)點(diǎn)在重力的作用下做自由落體運(yùn)動(dòng)直到再次撞擊到篩面為止,在質(zhì)點(diǎn)與篩面碰撞后將做連續(xù)的拋擲運(yùn)動(dòng)。我們?cè)O(shè)質(zhì)點(diǎn)連續(xù)兩次碰撞之間的時(shí)間為ti同時(shí)忽略碰撞的時(shí)間。這樣,根據(jù)能量守恒定律,質(zhì)點(diǎn)在篩面正向的正常速度為:
(2)
式中 δ 為振動(dòng)的方向角,°;y方向的撞擊速度, m/s; 篩板在撞擊時(shí)的速度, m/s; e質(zhì)點(diǎn)撞擊的回彈系數(shù)。
能量守恒定律指出質(zhì)點(diǎn)的拋射高度與質(zhì)點(diǎn)與篩面的撞擊有關(guān):
(3)
式中g(shù) 重力加速度,m/s2;a0篩板的傾角, °。 則平均拋射高度為:
(4)
式中 n 質(zhì)點(diǎn)的撞擊次數(shù)。因?yàn)橘|(zhì)點(diǎn)沿x方向沒(méi)有撞擊,從理論上定義平均拋射高度為:
(5)
式中 iD 拋擲系數(shù);D為拋擲指數(shù)。
3 仿真與討論
單質(zhì)點(diǎn)在圓形棒條篩網(wǎng)的直線振動(dòng)篩上的仿真條件見(jiàn)圖2a。我們采用將一個(gè)三維坐標(biāo)(單位:cm)的原點(diǎn)定在原坐標(biāo)系的水平軸上。篩板和質(zhì)點(diǎn)的初始位置分別為(0, 0, 15) 、 (-25, 0, 30)。篩面尺寸為60 cm×30 cm,篩孔尺寸為 (a) 2 cm,質(zhì)點(diǎn)的尺寸為(d) 4 cm回彈系數(shù)(e) 為0.5。圖2b顯示了質(zhì)點(diǎn)在篩分過(guò)程中的運(yùn)動(dòng)軌跡。
我們以z軸方向的軌跡為研究對(duì)象,我們將討論在不同振動(dòng)頻率、振幅、篩面傾角、振動(dòng)方向角下質(zhì)點(diǎn)的平均速度、平均拋射高度。
圖2 單質(zhì)點(diǎn)的篩分實(shí)驗(yàn)
3.1 振動(dòng)頻率的影響, f
恒定振幅、傾角、振動(dòng)方向角條件下下振動(dòng)頻率對(duì)質(zhì)點(diǎn)運(yùn)動(dòng)軌跡的影響見(jiàn)圖3。平均速度和平均拋射高度作為振動(dòng)頻率的函數(shù)在表1中列出。
表1 振動(dòng)頻率對(duì)質(zhì)點(diǎn)的影響
f (Hz)
12
13
14
15
v (m/s)
0.2978
0.5458
0.2140
0.2056
Vd (m/s)
0.2849
0.3087
0.3324
0.3562
hz (cm)
26.4468
25.1961
26.4119
22.6399
圖3 振動(dòng)頻率對(duì)拋射軌跡的影響
記錄顯示初始階段質(zhì)點(diǎn)速度隨著頻率的增大而增大,但之后隨著頻率的增大而減小。這是因?yàn)轭l率的提升引起質(zhì)點(diǎn)與篩面的撞擊次數(shù)增加,同時(shí)隨機(jī)拋射現(xiàn)象增多,后拋現(xiàn)象出現(xiàn)。這導(dǎo)致了質(zhì)點(diǎn)回彈現(xiàn)象的增多,增加了篩分過(guò)程的時(shí)間。 當(dāng) f 為13 Hz時(shí),質(zhì)點(diǎn)的回彈為6,完成篩分過(guò)程的時(shí)間為1.15s,質(zhì)點(diǎn)的平均速度最大值為0.5458m/s。但是當(dāng) f 為15 Hz時(shí)回彈次數(shù)為16,完成篩分過(guò)程的最長(zhǎng)時(shí)間為2.267 s。在這個(gè)頻率下,質(zhì)點(diǎn)的平均速度和平均拋射高度均為最小值。
對(duì)表1的分析結(jié)果顯示振動(dòng)頻率對(duì)平均速度的相關(guān)系數(shù)為0.494,對(duì)平均拋射高度的相關(guān)系數(shù)為0.725。這樣的結(jié)果指出振動(dòng)頻率對(duì)拋射高度的影響較大,對(duì)質(zhì)點(diǎn)的速度影響較小。最大平均速度和最大拋射高度是在振動(dòng)頻率為13Hz時(shí)獲得的。
3.2 振幅的影響,λ
振幅對(duì)質(zhì)點(diǎn)運(yùn)動(dòng)軌跡的影響見(jiàn)圖4。平均速度和平均拋射高度在表2中列出。
圖4 振幅對(duì)質(zhì)點(diǎn)運(yùn)動(dòng)軌跡的影響
圖4和表2顯示振幅的提高導(dǎo)致質(zhì)點(diǎn)和篩面之間的相對(duì)速度提高,從而提高了質(zhì)點(diǎn)的速度和拋射高度,同時(shí)回彈現(xiàn)象減少。這個(gè)結(jié)果符合理論上的預(yù)判。 當(dāng) λ為3.5 mm 時(shí)回彈次數(shù)為20,質(zhì)點(diǎn)的速度和拋射高度都比較小。這種情況下完成整個(gè)篩分過(guò)程所需的時(shí)間最長(zhǎng)(2.417 s)。隨著λ的增加篩分時(shí)間逐漸縮短到1.6s左右。當(dāng)λ為6.5mm時(shí)質(zhì)點(diǎn)的速度和拋射高度明顯提升。
對(duì)表2的分析給出了振幅與速度的相關(guān)系數(shù)為0.793,與拋射高度的相關(guān)系數(shù)為0.924。這個(gè)結(jié)果指出振幅對(duì)速度有一定影響,對(duì)拋射高度的影響較大。因此振幅應(yīng)該根據(jù)所篩分的物料進(jìn)行選取。對(duì)于相對(duì)難以篩分的物料應(yīng)該選取較大的振幅以提高質(zhì)點(diǎn)的速度和平均拋射高度。
表2 振幅對(duì)質(zhì)點(diǎn)運(yùn)動(dòng)的影響
X (mm)
3.5
4.5
5.5
6.5
v (m/s)
0.2107
0.2088
0.2140
0.2977
vd (m/s)
0.2116
0.2417
0.3324
0.3929
hZ (cm)
19.4694
21.5484
26.4119
40.9729
h (cm)
19.7285
19.8357
21.9001
24.2023
3.3 篩面傾角的影響, a0
篩面傾角對(duì)質(zhì)點(diǎn)運(yùn)動(dòng)軌跡的影響見(jiàn)圖5。質(zhì)點(diǎn)平均速度和平均拋射高度在表3中列出。
圖5 篩面傾角對(duì)質(zhì)點(diǎn)運(yùn)動(dòng)軌跡的影響
圖5和表3顯示隨著a0的增加質(zhì)點(diǎn)的平均速度增加而質(zhì)點(diǎn)經(jīng)歷的撞擊次數(shù)減少,拋射高度也有減少的趨勢(shì)。當(dāng)a0為0°時(shí)質(zhì)點(diǎn)與篩面有20次撞擊,平均速度為最小。完成篩分過(guò)程的時(shí)間為最長(zhǎng) (3 s)。 當(dāng)a0為6°時(shí)拋射高度為最大值。當(dāng)a0 為9° 時(shí)質(zhì)點(diǎn)與篩板的最初距離和相對(duì)速度為最小值,同時(shí)引起拋射高度減小。
表3 篩面傾角對(duì)質(zhì)點(diǎn)運(yùn)動(dòng)參數(shù)的影響
00 (°)
0
3
6
9
v (m/s)
0.2477
0.29167
0.2509
0.3169
Vd (m/s)
0.2954
0.3139
0.3324
0.3512
hz (cm)
21.5082
22.6978
26.4119
15.1523
h (cm)
18.44713
16.7279
21.9001
15.3953
根據(jù)表3篩面傾角與質(zhì)點(diǎn)平均速度和平均拋射高度的相關(guān)系數(shù)分別為0.644和0.697。因此篩面傾角對(duì)質(zhì)點(diǎn)平均速度和平均拋射高度的影響程度基本相同。當(dāng)篩面傾角為3°~6°時(shí)能夠獲得較高的質(zhì)點(diǎn)平均速度和平均拋射高度
3.4 振動(dòng)方向角的影響, δ
振動(dòng)方向角對(duì)質(zhì)點(diǎn)運(yùn)動(dòng)軌跡的影響同樣被研究了。圖6顯示了軌跡,質(zhì)點(diǎn)平均速度和平均拋射高度在表4中列出。
圖6 振動(dòng)方向角對(duì)質(zhì)點(diǎn)軌跡的影響
表4 振動(dòng)方向角對(duì)質(zhì)點(diǎn)運(yùn)動(dòng)參數(shù)的影響
S (°)
30
40
50
60
v (m/s)
0.3672
0.5293
0.2509
0.1903
vd (m/s)
0.4222
0.3831
0.3324
0.2716
hz (cm)
19.8286
22.5425
26.4119
48.2712
圖6和表4顯示,拋射高度隨著振動(dòng)方向角的增大而增大,但是速度隨著振動(dòng)方向角的增大而減小。 當(dāng)δ為40°時(shí),平均質(zhì)點(diǎn)碰撞次數(shù)為6,平均速度這時(shí)取得最小值。在這種情況下完成篩分過(guò)程的時(shí)間最短 (1.067 s)。當(dāng) δ為 60° 時(shí)質(zhì)點(diǎn)平均速度最小,撞擊次數(shù)為11,篩分實(shí)踐取得最大值 (2.15 s)。篩面垂直方向上速度的增加導(dǎo)致了質(zhì)點(diǎn)與篩面相對(duì)速度的增加,因此,拋射高度迅速增加達(dá)到最大值。
通過(guò)表4的數(shù)據(jù)我們得到了振動(dòng)方向角與質(zhì)點(diǎn)平均速度和平均拋射高度的相關(guān)系數(shù),分別是 0.70和0.889。這個(gè)結(jié)果指出,振動(dòng)方向角δ同時(shí)影響質(zhì)點(diǎn)平均速度和平均拋射高度。所以當(dāng)振動(dòng)方向角為40°左右時(shí)我們可以同時(shí)獲得較高的質(zhì)點(diǎn)平均速度和平均拋射高度。
4 結(jié)論
1)振動(dòng)篩面上的單質(zhì)點(diǎn)運(yùn)動(dòng)比較復(fù)雜。質(zhì)點(diǎn)在篩分過(guò)程中的運(yùn)動(dòng)可以較好的運(yùn)用彈性碰撞理論進(jìn)行描述。
2)在振動(dòng)篩的參數(shù)中,振幅和振動(dòng)方向角對(duì)質(zhì)點(diǎn)平均速度和平均拋射高度的影響比較大,相對(duì)的振動(dòng)頻率和篩面的傾角的影響就比較小。 對(duì)于難篩物料為了獲得較高的篩分效率比較理想的參數(shù)為頻率f 為13 Hz,振幅λ為6.6 mm,篩面傾角a0為6°,振動(dòng)方向角δ為40°。
3)基于物理仿真原則和篩分過(guò)程客觀規(guī)律的振動(dòng)篩仿真實(shí)驗(yàn)是研究篩分理論的簡(jiǎn)單而又可靠地辦法。
收藏