海上風力發(fā)電機及其控制系統(tǒng)設計含6張CAD圖
海上風力發(fā)電機及其控制系統(tǒng)設計含6張CAD圖,海上,風力發(fā)電機,及其,控制系統(tǒng),設計,cad
任 務 書
一、設計題目
海上風力發(fā)電機及其控制系統(tǒng)設計
二、主要任務及要求
1)主要任務: 完成一款海上風力發(fā)電機及其控制系統(tǒng)的設計
2)根據(jù)主要任務,通過比較、分析,確定最終方案,針對解決方案進行設計計算,完成機械結構(制造工藝)和控制系統(tǒng)的設計過程。
3)說明書中要求進行分析、評價方案對社會、健康、安全、法律和文化的影響,以及這些制約因素對項目實施的影響,并理解應承擔的責任。
4)能夠體現(xiàn)機械、電氣、信息等多學科背景,體現(xiàn)團隊的有效溝通、合及個體的作用。
5)圖紙規(guī)范、準確。
四、上交材料
(1) 系統(tǒng)方案圖及相關圖紙;
(2) 課程設計說明書(包含方案設計、主要部件的設計計算、根據(jù)任務要求進行的方案相關分析等內(nèi)容,8000字左右)
五、指導教師評語
優(yōu)秀
良好
中等
及格
不及格
滿分
得分
平時
表現(xiàn)
勤奮好學,善于思考
勤奮積極,態(tài)度認真
比較勤奮
不夠勤奮
不勤奮,態(tài)度不端正
10
圖紙
質(zhì)量
方案合理新穎,表達規(guī)范
方案合理,圖紙比較規(guī)范
方案一般,圖紙基本規(guī)范
方案基本合理,圖紙欠規(guī)范
方案不合理,圖紙不規(guī)范
20
說明書質(zhì)量
內(nèi)容全面,準確
內(nèi)容全面,基本準確
內(nèi)容一般,準確性一般
內(nèi)容基本全面,有小錯誤
內(nèi)容不全,錯誤較多
40
答辯
回答問題準確流利
回答問題比較準確
回答問題基本準確
回答問題欠準確
回答錯誤
30
總分
100
綜合評定成績: □優(yōu)秀 □良好 □中等 □及格 □不及格
指導教師: 日 期:
摘 要
基于開發(fā)風能資源在改善能源結構中的重要意義,本論文對海上風力發(fā)電機的特性作了簡要的介紹,且對海上風力發(fā)電機的各種參數(shù)和海上風力發(fā)電機類型作了必要的說明。在此基礎上,對海上風力發(fā)電機的原理和結構作了細致的分析。首先,對海上風力發(fā)電機的總體機械結構進行了設計,并且設計了轉(zhuǎn)向控制系統(tǒng)。本課題設計的是一種新型的立式垂直軸海上風力發(fā)電機,由風機葉輪、立柱、橫梁、轉(zhuǎn)向機構、離合裝置和發(fā)電機組成。這種海上風力發(fā)電機有轉(zhuǎn)換效率高,使用壽命長、價格低的特點,適合在風能資源豐富地區(qū)的東南沿海地區(qū)供應家庭用電。
其次,制作了轉(zhuǎn)向控制的模型。通過計算機仿真驗證了海上風力發(fā)電機轉(zhuǎn)向控制系統(tǒng)總體方案在實踐中的效果,并且驗證了程序是否正確,以及電路的設計是否合理。
最后,驗證的結果表明我設計的轉(zhuǎn)向控制系統(tǒng)方案可行,程序正確,電路設計合理。為該類型風力發(fā)電機的設計和商品生產(chǎn)提供了理論依據(jù)。
關鍵詞:風力發(fā)電;控制系統(tǒng);海上風力發(fā)電機
Abstract
Based on the significance of developing wind energy resources in improving energy structure, this paper gives a brief introduction to the characteristics of offshore wind turbines, and gives necessary explanations on the parameters of offshore wind turbines and the types of offshore wind turbines. On this basis, the principle and structure of offshore wind turbines are analyzed in detail. First of all, the overall mechanical structure of offshore wind turbines is designed, and the steering control system is designed. This project is designed as a new type of vertical shaft offshore wind turbine, consisting of fan impelers, columns, beams, steering mechanisms, clutches and generators. This offshore wind turbine has the characteristics of high conversion efficiency, long service life and low price, and is suitable for supplying household electricity in the southeast coastal areas of wind energy-rich areas.
Second, a model of steering control is made. The effect of the overall scheme of offshore wind turbine steering control system in practice is verified by computer simulation, and the correct procedure and the design of circuit are verified.
Finally, the results show that the steering control system scheme I designed is feasible, the procedure is correct and the circuit design is reasonable. It provides a theoretical basis for the design and commercial production of this type of wind turbine.
Keywords:Wind power generation;Control system;Offshore wind turbines
目 錄
摘要 .....................................................................ⅠABSTRACT ................................................................Ⅱ第一章 概述................................................................1
1.1 風力發(fā)電機概況 .....................................................1
1.2 風力發(fā)電機的研究現(xiàn)狀 .............................................1
1.2.1 國外風力發(fā)電機的研制情況 ......................................1
1.2.2 國內(nèi)風力發(fā)電機的研制情況 .....................................1
1.3 研究風力發(fā)電機的目的和意義 ........................................1
第二章 風力機理論 ......................................................2
2.1 基本公式 ...........................................................2
2.1.1 風能利用系數(shù) ..................................................2
2.1.2 風壓強 ........................................................2
2.1.3 阻力式風力機的最大效率 ........................................2
2.2 工作風速與輸出功率 ................................................3
2.2.1 風力發(fā)電機的輸出效率 ...........................................4
2.2.2 工作風速與輸出功率 ..............................................5
2.2.3 啟動風速和額定風速的選定 .......................................6
第三章 風力發(fā)電機方案和結構設計 .....................................7
3.1 小型垂直式風力發(fā)電機方案設計 .....................................7
3.2 風葉 .............................................................8
3.3 行星齒輪加速器設計計算 ...........................................9
3.3.1 設計要求 ......................................................10
3.3.2 選加速器類型 ..................................................10
3.3.3 確定行星輪數(shù)和齒數(shù) .............................................11
3.3.4 壓力角(α)的選擇.................................................12
3.3.5 齒寬系數(shù)的選擇 ................................................12
3.3.6 模數(shù)選擇 ......................................................13
3.3.7 預設嚙合角 ....................................................13
3.3.8 太陽輪與行星輪之間的傳動計算 ..................................14
3.3.9 行星輪與內(nèi)齒輪之間的傳動計算 ..................................14
3.3.10 行星排各零件轉(zhuǎn)速及扭矩的計算 ..................................15
3.3.11 行星排上各零件受力分析及計算 ..................................15
3.3.12 行星齒輪傳動的強度校核計算 ....................................16
3.4 電磁離合器設計計算 ...............................................16
3.4.1 選型 ..........................................................16
3.4.2 牙嵌式電磁離合器的動作特性 ....................................17
3.4.3 離合器的計算轉(zhuǎn)矩 ............................................17
3.4.4 離合器的外徑 ............................................17
3.4.5 離合器牙間的壓緊力 .........................................17
3.4.6 線圈槽高度 .................................................18
3.4.7 磁軛底部厚度 ..............................................18
3.4.8 銜鐵厚度 .................................................18
第四章 控制系統(tǒng)方案設計 .............................................19
4.1 設計控制系統(tǒng)的目的 .............................................19
4.2 控制系統(tǒng)方案分析 ...............................................19
4.3 單片機 ..........................................................19
4.4 信號采集 .......................................................19
4.5 電路 ...........................................................19
4.6 控制程序 ......................................................20
4.6.1 定時器周期 ...................................................21
4.6.2 程序流程圖 ...................................................21
4.6.3 控制程序.......................................................22
參考文獻 ..........................................................23
第一章 概述
1.1 海上風力發(fā)電機概況
隨著現(xiàn)代技術的發(fā)展, 風力發(fā)電迅猛發(fā)展。以機組大型化(50kW~ 2MW )、集中安裝和控制為特點的風電場(也稱風力田、風田) 成為主要的發(fā)展方向。20 年來, 世界上已有近30 個國家開發(fā)建設了風電場(是前期總數(shù)的3 倍) , 風電場總裝機容量約1400 萬kW (是前期總數(shù)的100 倍)。目前, 德國、美國、丹麥以及亞洲的印度位居風力發(fā)電總裝機容量前列, 且未來計劃投資有增無減。美國能源部預測2010 年風電至少達到國內(nèi)電力消耗的10%。歐盟5 國要在2000~ 2002 年達到本國總發(fā)電量的10%左右, 丹麥甚至計劃2030 年要達到40%。
中國是一個風力資源豐富的國家, 風力發(fā)電潛力巨大。據(jù)1998 年統(tǒng)計, 風力風電累計裝機22.36萬kW , 僅占全國電網(wǎng)發(fā)電總裝機的0.081% , 相對于可開發(fā)風能資源的開發(fā)率僅為0.088%。
1.2 風力發(fā)電機的研究現(xiàn)狀
1.2.1 國外風力發(fā)電機的研制情況
美國從1974年起對風能進行系統(tǒng)的研究,能源部對風能項目的投資累計已達到25億美元。許多著名大學和研究機構都參加了風能的研究開發(fā),目前己安裝了8個巨型風力發(fā)電機組。到19%年末,風力發(fā)電總裝機容量己達到170xkw,所提供的電力占全美電力需求量的10%,居世界之首位,主要集中在加利福尼亞州。美國國會己通過了能源政策法,在能源部的規(guī)劃下,將會改變風力發(fā)電集中于加利福尼亞的局面,在年平均風速達5.6m/s的中西部12個州將建風力電站。據(jù)能源部預測,在未來15年內(nèi),風電將增加6倍。在今后2年內(nèi),在懷俄明、伊阿華、明尼蘇達、得克薩斯、佛蒙特、緬因州等修建大型風電場,這些風電場將使美國風力發(fā)電能力再增加40xkw,預計到2010年,風力發(fā)電總裝機容量將達到630xkw,可滿足全美電力需求量的25%。
1.2.2 國內(nèi)風力發(fā)電機的研制情況
1.2.2.1 我國風力發(fā)電概況
中國利用風能己有悠久的歷史,古代甲骨文字中就有“帆”字存在,1800年前東漢劉熙著作里有“隨風張慢曰帆”的敘述,說明我國是利用風能最早的國家之一。1637年明崇幀十年《天工開物》書里有“揚郡以風帆數(shù)頁,侯風轉(zhuǎn)車,風息則止”的記載,表明在明代以前,我國勞動人民就會制作將線運動轉(zhuǎn)變?yōu)轱L輪旋轉(zhuǎn)運動的風車,在風能利用上前進了一大步。
1.3 研究風力發(fā)電機的目的和意義
風能是對人類生存環(huán)境影響最小的能源。除此之外,風能資源非常豐富,取之不盡,用之不竭。據(jù)統(tǒng)計,太陽向地球輻射的巨大能量中,約有1%轉(zhuǎn)化為風能。這些能量相當于全球每年消耗的煤、石油等化石燃料能量的總和,可見風能的潛力是非常大的。隨著風力發(fā)電技術日趨成熟,風力發(fā)電規(guī)模也不斷擴大,美國加州由數(shù)家風能公司提供給電網(wǎng)的電量,足以供應舊金山這樣的大城市的居民需求。我國風電事業(yè)近年來發(fā)展較快,已有16萬臺微型風力發(fā)電機用于邊遠山區(qū)、牧區(qū)、海島,初步解決了地處邊遠,居住分散,電網(wǎng)難以到達地區(qū)的居民用電問題。,國家從宏觀規(guī)劃角度出發(fā),制定了“乘風計劃”,面向國內(nèi)外市場發(fā)展風力發(fā)電。“乘風計劃”不僅會大大促進我國風電事業(yè)的發(fā)展,而且對減排有害污染物,促進環(huán)境的改善有著重要意義。
第二章 風力發(fā)電機理論
2.1 基本公式
2.1.1 風能利用系數(shù)
風力機從自然風能中吸收的能量大小程度用風能利用系數(shù)表示。橫截面積為s()的氣流的動能為
公式(1)
式中——空氣的密度,
——風速,
2.1.2 風壓強
如圖2-1a,根據(jù)伯努力方程,風中物體受到的風壓Q為
公式(2)
式中——空氣阻力系數(shù),與物體形狀有關,平板一般取2
——風與平板的相對速度
2.1.3 阻力式風力機的最大效率
建立簡單的理想模型,一個平板在風的氣動壓力作用下沿著風速方向運動,如圖2-lb,并規(guī)定平板上游一定距離上的風速為,平板的運動速度為v,那么平板吸收的功率可以表示為
公式(3)
對給定的上游風速玲,可以寫出以平板的運動速度V為函數(shù)的功率變化關系式,對v進行微分得
所以
令dP/dV=0,可以得到兩個解:
1) V1=Vf沒有物理意義
2) V2=Vf/3對應于最大值
公式(4)
從上式中可以看出,阻力式風力機的效率是比較低的,提高效率的唯一辦法是設法提高風的阻力系數(shù)C。
2.2 工作風速與輸出功率
2.2.1 風力發(fā)電機的輸出效率
最理想的風力機也不可能吸收全部的風能,而只能吸收部分風能。如上一節(jié)推導的那樣,有一個最大風能利用系數(shù)。但是,風力機在制做過程中,由于受到各種條件的限制,做不到完全理想的形狀。因此實際的風力機和理想的風力機之間也有差異。實際風力機吸收的功率與理想風力機吸收的功率的比值叫做風力機的效率。用表示。另外還有傳動機構的效率甲和發(fā)電機的效率等,所以實際風力發(fā)電機輸出的效率,可以表示為 公式(5)
2.2.2 工作風速與輸出功率
風力機啟動時,為了克服其內(nèi)部的摩擦阻力而需要一定的力矩。這一最低力矩值叫做風力機的啟動力矩。啟動力矩主要與風力機本身的傳動機構摩擦阻力有關·因此風力機有一最低工作風速稱,只有風速大于時風力機才能工作。
當風速超過某一值的時候,基于安全上的考慮(主要是塔架和槳葉強度),風力機應該停止運轉(zhuǎn),所以每一臺風力機都規(guī)定有最高風速,最高風速與風力機的設計強度有關,是設計時給定的參數(shù)。
最小風速稱,和最大風速之間的風速叫做風力機的工作風速,相應于工作風速風力機有功率輸出。當風力機的輸出功率達到標稱功率時的工作風速叫做該風力機的額定風速。
2.2.3 啟動風速和額定風速的選定
如何根據(jù)風能資源來選用風力機,使風力機的運行狀態(tài)最佳,確定起動風速和額定風速是關鍵。
2.2.3.1 雙參數(shù)威布爾分布 風能就是流動空氣具有的動能。單位時間通過垂直于空氣流的單位面積的空氣流所具有的動能叫風能密度,設為空氣密度,v為風速,則風能密度p=0.5,隨v的立方增大,變化非???,故知道風速的變化情況是利用風能的先決條件。
風速V是隨機變量,經(jīng)研究專家們多認為用雙參數(shù)威布爾概率密度函數(shù)擬合風速頻率分布最好腳。威布爾分布函數(shù)形如下式
公式(6)
其中K為形狀參數(shù),無量綱,C為尺度參數(shù),量綱為m。不同地區(qū),不同時期參數(shù)K、C是不同的,可根據(jù)某地連續(xù)30年的風資料算出該地的K、C參數(shù),威布爾分布函數(shù)曲線見圖2-2。參數(shù)K、C影響曲線形狀,K大C大曲線陡峻,峰右移,反之亦然。
圖2-2 威布爾分布函數(shù)曲線
上式滿足
威布爾概率累計函數(shù)g(V)為
公式(7)
顯然,風速>V的概率為 公式(8)
2.2.3.2 起動風速 啟動風速為風力機風輪由靜止開始轉(zhuǎn)動并能連續(xù)運轉(zhuǎn)的最小風速:風力機分水平軸和垂直軸兩大類,每一類又有多種形式,同一形式還有若干種規(guī)格,只有科學地選擇適合當?shù)仫L能資源的風力機,才能以較少的投資獲取較多的風能。
根據(jù)國內(nèi)外100多種風力機,起動風速的范圍是2m,至6m,這一范圍能滿足風能豐富區(qū)、較豐富區(qū)、可利用區(qū)的不同需要。
雙參數(shù)威布爾分布函數(shù)曲線峰值對應的凡就是起動風速(圖2-2)。對上式求一階導數(shù)且令其等于O有
公式(9)
因為C不為0,K不為0,只有
解得
證明氣是出現(xiàn)概率最大的風速。使用起動力風速大于上式計算的氣的風力機會損失小風速這一區(qū)段的風能,使用起動風速小于上式計算的咋的風力機是否更好呢?表面看低風速的風能得到更多的利用,深入研究可知在之氣的較高風速區(qū)風能利用率下降,總體上是得不償失,故選用盡可能接近上式結果的風力機最為理想。
2.2.3.3 額定風速 額定風速的選定直接影響風能利用系統(tǒng)整體的效率和經(jīng)濟性,是風力發(fā)電機設計中的重要參數(shù)。
己知風能密度p=12,對一臺效率為,槳葉半徑為廠的風力機,輸出功率w(V)的威布爾分布函數(shù)為
w(V)峰值對應之風速應是額定風速,此時風力機提取的風能最多。
公式(10)
令
2.2.3.4 風力機的工作風速、輸出功率與風能的關系 風力機的工作風速、輸出功率與風能的關系可以簡單地如圖2一3來表示(注:圖中縱坐標表示輸出功率,單位為:w/;橫坐標表示風能,單位為:m/s)
A一理論風能曲線B一扣除空氣動力損失后的風力機吸收的功率
C一計算傳動損失和機械能轉(zhuǎn)換損失后的功率曲線
D一發(fā)電機實際輸出功率曲線
圖2一3 功率與風速的關系
第三章 海上風力發(fā)電機方案和結構設計
3.1 海上風力發(fā)電機方案設計
現(xiàn)在,各個發(fā)達國家均大力發(fā)展新能源產(chǎn)業(yè),雖然太陽能一直是新能源商業(yè)化的首選,因為太陽能的設置地點較靈活,不會產(chǎn)生噪音,可以和建筑進行一體化設計。但是風力發(fā)電較太陽能而言,它的成本優(yōu)勢明顯。傳統(tǒng)的風力發(fā)電機啟動風速要求較高,發(fā)電噪音也很大,所以只能將風力發(fā)電機放在人跡罕至的地方或風力較大的地方。設備也是往大型風力發(fā)電機發(fā)展,專門建設大型風力發(fā)電場,這樣,小型風力發(fā)電在相當長的時間里未得到較好的發(fā)展。所以,如何使風力發(fā)電和建筑進行一體化設計,降低小型風力發(fā)電機噪音,使其安裝在建筑周圍而不影響人的生活質(zhì)量,已成為各個國家研究的焦點!
我設計的是一種新型的立式垂直軸小型風力發(fā)電機,由風機葉輪、立柱、橫梁、變速機構、離合裝置和發(fā)電機組成。如下圖所示:
漿 葉
固定架
變速箱
星形齒輪加速器
電磁離合器
發(fā)電機
整流器
蓄電池
逆變器
負 載
圖3-1小型垂直軸風力發(fā)電機框圖
該小型垂直軸風力發(fā)電機的發(fā)電原理為:在風的吹動下,風輪轉(zhuǎn)動起來,使空氣動力能 上,帶動發(fā)電機軸旋轉(zhuǎn),從而使永磁三相發(fā)電機發(fā)出三相交流電。風速的不斷變化、忽大忽小,發(fā)電機發(fā)出的電流和電壓也隨著變化。發(fā)出的電經(jīng)過控制器的整流,由交流電變成了具有一定電壓的直流電,并向蓄電池進行充電。從蓄電池組輸出的直流電,通過逆變器后變成了220伏的交流電,供給用戶的家用電器。應用范圍:
提供220伏交流電或24伏、36伏或48伏直流電
照明: 燈泡,節(jié)能燈
家用電器:電視機、收音機、電風扇、洗衣機、電冰箱;
該新型垂直軸風力發(fā)電機的特點為:
1. 額定功率(w):300
2. 輸出電壓(v):24
3. 啟動風速(m/s):2
4. 額定風速(m/s):6
5. 最大使用風速(m/s):20
發(fā)電機為額定功率300w,輸出電壓24v。
該新型垂直軸風力發(fā)電機的優(yōu)點為:
1. 結構簡單
2. 易維護
3. 運行平穩(wěn)安全
4. 抗強風能力強
5. 操作簡單
6. 價格低廉
3.2 風葉
采用帆翼式風葉,帆翼式是英國發(fā)展的一種立軸帆翼式風力機,結構簡單、性能較高。帆翼的形狀如下圖所示。由于其制造簡單,成本低,性能好,所以適于推廣使用。
圖3-2 帆翼式
3.3 行星齒輪加速器設計計算
3.3.1 設計要求
設計壽命5年,單班,一年360天,中等傳動,傳動逆轉(zhuǎn),齒輪對稱布置,不允許點蝕,無嚴重過載,閉式傳動。齒輪精度8-7-7,齒輪材料:20CrNiMoH,碳氮共滲處理,硬度為Hv740以上。軸材料:20NiCrMoH或20CrMnMo。齒圈材料:42CrMo,氮化處理,硬度為Hv40O以上。
3.3.2 選加速器類型
小型風力發(fā)電機是安裝在樓頂或屋頂上的,所以盡量選擇體積小、重量輕、性能穩(wěn)定的設備。在選擇行星齒輪時,我選擇NGW型星形齒輪加速器,因為這個型號的齒輪傳動效率高,體積小,重量輕,結構簡單,制造方便,傳遞功率范圍大,軸向尺寸小,可用于各種工作條件的特點。
輸入軸
輸出軸
R
S
C
P
圖3-3 NGW型行星齒輪加速器
3.3.3 確定行星輪數(shù)和齒數(shù)
在行星齒輪加速器中選擇行星輪數(shù):=3
通過查表法確定了齒輪的齒數(shù)(機械手冊):
總傳動比 i =5.4
太陽輪齒數(shù) =20
內(nèi)齒輪齒數(shù) =88
行星輪齒數(shù) =34
3.3.4 壓力角()的選擇
我們國家和許多國家都把齒輪的標準壓力角規(guī)定為,因此,本次設計的變速箱采用壓力角,以提高加工刀具的通用性。
3.3.5 齒寬系數(shù)的選擇
對于硬齒面齒輪的齒寬系數(shù)應小于軟齒面的齒寬系數(shù)。一般情況下,硬齒面值齒輪可取<0.7。齒寬系數(shù)小=(b/a),一般可取0.4一0.8,常取0.6一0.7。
3.3.6 模數(shù)選擇
齒輪的模數(shù)是決定齒輪大小和幾何參數(shù)的主要參數(shù),它直接影響齒輪的抗彎曲疲勞強度。設計變速箱選取模數(shù)的大小,主要與下列因素有關:
1.齒輪上受力的大小,作用力大,模數(shù)也大。
2.與材料、加工質(zhì)量、熱處理質(zhì)量好壞有關。
對于模數(shù)(m)的確定,可以根據(jù)同類變速箱的統(tǒng)計,參考選擇。
下列為行星傳動變速箱模數(shù)統(tǒng)計表:
通過以上比較,我確定本次設計變速箱的模數(shù)為:2.5mm。
3.3.7 預設嚙合角 = =
3.3.8 太陽輪與行星輪之間的傳動計算
(1)計算未變位時的中心距
===67.5
(2)初算中心距變動系數(shù)
==
(3)計算中心距并取圓整值
a=m()=70
(4) 實際中心距變動系數(shù)
==0.75
(5)計算嚙合角
cos===0.912323, =
(6) 計算總變位系數(shù)
==(20+34)=0.827
(7)校核
介于p7及p8之間,有利于接觸強度及抗彎強度,所以可用
(8)分配變位系數(shù)
=0.437 =0.39
3.3.9 行星輪與內(nèi)齒輪之間的傳動計算
(1)計算未變位時的中心距
===67.5
(2) 計算中心距變動系數(shù)
==-0.25
(3)計算嚙合角
cos===0.9488, =
(4) 計算總變位系數(shù)
==(88-34)=-0.241
(5)分配變位系數(shù)
=+=-0.241 +0.39=0.149
3.3.10 行星排各零件轉(zhuǎn)速及扭矩的計算
因效率對強度校核的扭矩影響比較小,因而在下面的扭矩計算中不考慮效率的影響。對行星排各零件的扭矩進行計算。
:: = 1::(1+)=1:2.4545:-3.4545
因通過太陽輪輸出扭矩,風力發(fā)電機發(fā)電時發(fā)電機的轉(zhuǎn)矩為2168(Nm),故反方向計算,故太陽輪為輸入扭矩:
==2168(Nm)
風力發(fā)電機正常工作時的轉(zhuǎn)速為=1175(rpm)
太陽輪轉(zhuǎn)速 =1175(rpm)
行星輪轉(zhuǎn)速 ==1148(rpm)
3.3.11 行星排上各零件受力分析及計算
1.太陽輪受力如下
圓周力
根據(jù)公式 =
式中一作用在太陽輪上的扭矩=2168 (N·m)
一行星輪數(shù)目=3
一太陽輪分度圓直徑=74.25 (mm)
徑向力
根據(jù)公式 =
式中 一齒輪壓力角=
一分度圓上螺旋角=
=9733Xtg20o=3543(N)
2.行星輪P受力分析如下:
圓周力 ==9733(N)
徑向力 ==3543(N)
3.行星架C受力如下:
圓周力 =2=29733=19466(N)
徑向力 =0(N)
4.齒圈R受力如下:
圓周力 ==9733(N)
徑向力 ==3543(N)
3.3.12 行星齒輪傳動的強度校核計算
行星齒輪傳動中的齒輪計算方法主要是按照GB3480“漸開線圓柱齒輪承載能力計算方法”計算,并考慮行星傳動的特點進行計算校核。
(l)彎曲疲勞強度校核
a.分度圓上的圓周力Ft
根據(jù)前面的計算結果,行星輪和齒圈上受力在前進二檔時最大,所受的圓周力均為Ft=13360(N)
b.齒寬計算
太陽輪與行星輪的齒寬分別為48mm、46mm;齒圈的齒寬為54mm
c.使用系數(shù) 查手冊得 =1.25
d.動載系數(shù)
太陽輪分度圓上的圓周速度,根據(jù)下列公式計算
=
式中 一太陽輪相對于行星架的圓周速度(m/s)
ds 一太陽輪分度圓直徑(mm) =148.5(mm)
一太陽輪轉(zhuǎn)數(shù)(rpm) =733(rpm)
一行星輪相對行星架的轉(zhuǎn)數(shù)(rpm) =-716(rpm)
一行星架轉(zhuǎn)數(shù)(rpm) =212(rpm)
代入公式 所以 ==4.05(m/s)
=1+()=1.1(m/s)
同理可得 行星輪P ==4.06(m/s)
計算得 =1.10
齒圈R =
計算得 =1.114
e .齒間載荷分配系數(shù)、
因為 /b=3N/mm100N/mm 且為表面硬化的直齒輪。
所以 =1.2
f.齒向載荷分布系數(shù)
對于太陽輪、行星輪和齒圈,它們的齒輪寬度和行星齒輪的分度圓直徑比都小于1,則
g. 復合齒形系數(shù)
h. 重合度系數(shù)
因為 =1.47 =1.583
=0.25+
太陽輪與行星輪=0.76 行星輪與齒圈=0.724
i.螺旋角系數(shù) =1-
因為=0 所以
j.彎曲應力
由公式:=
=1.251.11.214.00.7611.15=356.78(MPa)
=1.251.11.213.90.72411.15=367.6(MPa)
=1.251.11.214.00.72411.15=364.6(MPa)
k. 彎曲疲勞強度的壽命系數(shù)
=60rnt>3 所以 ===1
取=380M
l. 相對齒根的圓角敏感系數(shù)
查表得 太陽輪、行星輪、齒圈的敏感系數(shù)均為=1
m. 相對齒根表面狀況系數(shù)
查表得 =0.9
n.應力修正系數(shù) =2
o.齒輪的彎曲疲勞極限
由公式 =
=46012110.9=828(M)
=32212110.9=579.6(M)
=38012110.9=684(M)
安全系數(shù)S
===2.32
===1.57
===1.87
按具有高可靠性要求取最小安全系數(shù)=1.5 從而可看出:
〉 〉 〉
所以彎曲強度校核通過。
(2) 接觸疲勞強度校核
a. 接觸強度的齒間載荷分配系數(shù)
太陽輪與行星輪嚙合時總重合度1.47 查表得 =1.2
齒圈與行星輪嚙合時的總重合度1.583 查表得 =1.2
b.節(jié)點區(qū)域系數(shù)
計算=
得=2.3186
c.彈性系數(shù)
可由公式=
得太陽輪與行星輪嚙合時==0.918
齒圈與行星輪嚙合時==0.8975
d.接觸疲勞強度極限
太陽輪與行星輪是合金鋼滲碳處理,取1500M
齒圈是合金鋼氮化處理,取1200M
e.壽命系數(shù)
=60rnt>5 所以 ===1
f.潤膜影響系數(shù)太陽輪和行星輪為8級精度,齒圈為9級精度,選用=115/s的礦物油,則查表得:太陽輪和行星輪為=0.9,齒圈為=0.8
g.齒面工作硬化系數(shù)=1
h.尺寸系數(shù)=1
i.齒輪的接觸疲勞極限
由公式=
=150010.911=1350M
=150010.911=1350M
=150010.811=9600M
j.安全系數(shù)S
===1.05
===1.05
===1.47
按具有高可靠性要求取最小安全系數(shù)=1.0從而看出齒輪滿足使用要求。
3.4 電磁離合器設計計算
3.4.1 選型
為滿足風力發(fā)電機工作環(huán)境的需要,在風力發(fā)電系統(tǒng)中我選擇牙嵌式電磁離合器,因為牙嵌式電磁離合器有外形尺寸小,傳遞轉(zhuǎn)矩大,無空轉(zhuǎn)轉(zhuǎn)矩,無摩擦發(fā)熱,無磨損,不需調(diào)節(jié),傳動比恒定無滑差,使用壽命長,脫開快,干、濕兩用的特點。(電源為12v直流電)
3.4.2 牙嵌式電磁離合器的動作特性
如圖所示,通電后,當激磁電流按指數(shù)曲線上升時,由于銜鐵被吸引,線圈中電感增大,引起電流第一次短時間下降,以后還會由于銜鐵吸引后尚不能起動負載轉(zhuǎn)矩,出現(xiàn)牙間嵌合、脫開和再嵌合的滑跳現(xiàn)象,致使電流發(fā)生多次跳動,直到能帶動負載轉(zhuǎn)矩時才趨向穩(wěn)定。對于靜態(tài)接合,起動時間的長短主要與銜鐵吸引時間有關,而對動態(tài)起動,則與相對轉(zhuǎn)速、負載特性、負載的增加情況以及牙的相對位置等因素有關。離合器的脫開時間就是從切斷激磁電流開始到牙完全脫開嵌合,傳遞力矩消失所經(jīng)歷的時間,此時電流也按指數(shù)曲線衰減。
3.4.3 離合器的計算轉(zhuǎn)矩
式中 T-離合器傳遞的理論轉(zhuǎn)矩,它包括工作轉(zhuǎn)矩和起動的慣性轉(zhuǎn)矩 T=2168(Nm);
K-工作情況系數(shù) K=1.5
所以 1.5 2168=3252(Nm)
3.4.4 離合器的外徑
=133
3.4.5 離合器牙間的壓緊力
Q
式中 -牙形角, =
-摩擦角, =
-牙的平均直徑
-銜鐵摩擦面的摩擦系數(shù)
-銜鐵導向孔直徑
-彈簧推力,=40
3.4.6 線圈槽高度
=20mm
式中 -線圈槽高度比, =5
-傳熱系數(shù),=11
-填充系數(shù), =0.6
-電阻系數(shù),=0.017
3.4.7 磁軛底部厚度
==4mm
3.4.8 銜鐵厚度
=8mm
一般取余量 =4
第四章 控制系統(tǒng)方案設計
4.1 設計控制系統(tǒng)的目的
轉(zhuǎn)向調(diào)節(jié)是海上風力發(fā)電機的關鍵技術之一,我設計電磁離合器就是為了盡可能提高風力機風能轉(zhuǎn)換效率和保證風力機輸出功率平穩(wěn),并且防止因瞬時電量過大而毀壞發(fā)電機和電力設施的現(xiàn)象出現(xiàn)。
4.2 控制系統(tǒng)方案分析
本課題設計的控制系統(tǒng)是一個機電一體化系統(tǒng),從控制觀點來看,整個系統(tǒng)可分為六部分:電磁離合器機構、電路、單片機、程序、編碼器、環(huán)境,其中的電路、單片機、程序、編碼器等部分構成了控制系統(tǒng)。目前風力發(fā)電機中投入運行的機組主要有兩類功率調(diào)節(jié)方式:一類是定漿距失速控制;另一類是變漿距控制。定漿距失速控制是指大功率高轉(zhuǎn)速的發(fā)動機工作于高風速區(qū),小功率低轉(zhuǎn)速的發(fā)動機工作于低風速區(qū), 通過葉片的失速或偏航控制來追求最高的發(fā)電效率。實際上難以做到功率恒定,通常有些下降, 變漿距控制是指通過改變與葉片相匹配的葉片攻角來調(diào)節(jié)風力機發(fā)電效率。這兩種公路調(diào)節(jié)方式都存在反應慢而造成瞬時過載的缺點。我設計的電磁離合器控制系統(tǒng)是通過程序?qū)﹄姶烹x合控制,當風力發(fā)電機轉(zhuǎn)速超過額定轉(zhuǎn)速時,控制系統(tǒng)會使電磁離合器分離,當速度降低到額定轉(zhuǎn)速時電磁離合器將閉合,帶動發(fā)電機發(fā)電。這個系統(tǒng)有反應速度快、準確、成本低的特點。
4.3 單片機
本課題模型采用的單片機是AT89C51,單片機是指一個集成在一塊芯片上的完整計算機系統(tǒng)。盡管他的大部分功能集成在一塊小芯片上,但是它具有一個完整計算機所需要的大部分部件:CPU、內(nèi)存、內(nèi)部和外部總線系統(tǒng),目前大部分還會具有外存。同時集成諸如通訊接口、定時器,實時時鐘等外圍設備。而現(xiàn)在最強大的單片機系統(tǒng)甚至可以將聲音、圖像、網(wǎng)絡、復雜的輸入輸出系統(tǒng)集成在一塊芯片上。
4.4 信號采集
本課題模型用編碼器來采集信號,把編碼器高低電平的變化的信號傳入單片機,單片機對信號進行分析,判斷電磁離合器通電還是斷電。
4.5 電路
本模型的電路包括單片機最小電路和上電復位電路,這個裝置可以用匯編語言來指導自動化運作與電腦差不多,讀入數(shù)據(jù)后,依據(jù)半導體進行邏輯運算,并把結果輸出。從而達到根據(jù)轉(zhuǎn)速控制電磁離合器的目的。
圖4-1 電磁離合器控制系統(tǒng)電路圖
4.6 轉(zhuǎn)向程序
4.6.1 定時器周期
本模型設計50ms為一個周期,所以定時器必須工作于方式1。
定時器初值為:
TC=M-T/==15536=3CB0H
4.6.2 程序流程圖
圖4-2 程序流程圖
4.6.3 控制程序
4.6.3.1 主程序
ORG 0000H
LJMP START
ORG 000BH
LJMP Dingshi
Chushi: SuduH DATA 20H
SuduL DATA 21H
MOV TMOD, #51H
MOV TH0, #3CH
MOV TL0, #0B0H
MOV IE, #82H
SETB TRO
START: MOV A, #00H
CJNE A, SuduH, Buxiangdeng1
Xiangdeng1: MOV A, #02H
CJNE A, SuduL, Buxiangdeng2
Xiangdeng2: LJMP Miedeng
Buxiangdeng1:JC Liangdeng
Ljmp Miedeng
Buxiangdeng2:JC Liangdeng
Ljmp Miedeng
Liangdeng: MOV P1.0, #00H
LJMP START
Miedeng: MOV P1.0, #0FFH
LJMP START
4.6.3.2 中斷服務程序:
Dingshi: MOV SuduH, TH1
MOV SuduL, TL1
CLR TH1
CLR TL1
MOV TH0, #3CH
MOV TL0, #0B0H
RETI
END
參考文獻
[1胡蛟抨.取之不盡的風力發(fā)電.生態(tài)經(jīng)濟,2001
[2]黃素逸.能源科學導論.中國電力出版社,1999
[3]張煥芬.喜文華.先進國家的風力發(fā)電現(xiàn)狀及其前景.甘肅科學學報,1998
[4]張廣盛.風能的利用.青海科技,1997
[5]郭繼高.風能發(fā)電一小型風能發(fā)電及其發(fā)電機(1).微特機,1999
[6]NREL.Renewable Data Overview.Renewable Energy Annual,1997
[7]Energy Policies of IEA Countries. 1997 Review.OECD,1997
[8]姚興佳,依雪峰.風力發(fā)電在跨世紀能源結構中的地位.節(jié)能,1997
[9]中國能源情報網(wǎng)主編.中國新能源的開發(fā)與利用.能源出版社1996
[10]陳宗器.風力發(fā)電綜述與我國的開發(fā)設想.電機與控制學報,1999
[11]郭繼高.小型風能發(fā)電及其發(fā)電機(1).風能發(fā)電,1999
[12]張鵬舉.風電場空氣密度對風電機輸出功率的影響.電力勘測,1999
[13]張照煌.劉衍平,李林.關于風力發(fā)電技術的幾點思考.電力情報1998
24
收藏