喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預覽哦。。。下載后都有,,請放心下載,,文件全都包含在內,,【有疑問咨詢QQ:1064457796 或 1304139763】
=============================================喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預覽哦。。。下載后都有,,請放心下載,,文件全都包含在內,,【有疑問咨詢QQ:1064457796 或 1304139763】
=============================================
第1章 緒 論
1.1 選題的目的和意義
輪椅是病人康復的重要工具,它不僅是肢體傷殘者的代步工具,更重要的是使他們借助于輪椅進行身體鍛煉和參與社會活動。普通輪椅一般由輪椅架、車輪、剎車裝置及座靠四部分組成。
許多行動不便者在解決移動能力障礙時,最直接使用的工具便是輪椅。根據(jù)我國統(tǒng)計部門統(tǒng)計,截止到2006年4月1號,全國現(xiàn)有各類殘疾人總數(shù)約8296萬人,占總人口數(shù)的比例為6.34%,而屬于肢體殘疾的占總殘疾人數(shù)的比例為29.07%,人數(shù)達到2412萬。與1987年第一次全國殘疾人抽樣調查統(tǒng)計數(shù)據(jù)可以看出,肢體殘疾人數(shù)略有所增加。2005年底,中國60歲以上老年人口1.44億,占總人口的比例達11%?,F(xiàn)在我國60歲以上老年人口每年以3%的速度遞增。在60歲以上的老年人口中,有相當一部分老年人在日常生活和工作中,在疾病治療和康復過程中,都需要借助使用輪椅。這對于家庭生計、社會成本與國家經濟均會造成嚴重的影響,不可輕視。對于青壯年的肢體障礙患者而言,輪椅可使他們重新返回職場,以改善家庭生計和降低社會負擔;對于行動不便的高齡老人或出現(xiàn)重度神經肌肉萎縮的患者而言,輪椅是他們走出戶外的最佳輔具,不但能改善他(她)們的精神生活,而且在心靈層面上更得到慰藉。
隨著我國人口老齡化速度越來越快。老人因疾病或衰老,需要輪椅來輔助行走。但是目前城市人行道上都鋪設了各種尺寸的地磚,加上凹凸不平的盲道,使得輪椅在行駛時受到來自路面的高頻激振,嚴重影響乘坐的舒適性。所以,需要一種研究針對人行道路面激勵的減振裝置。而根據(jù)我國的國情,老人和殘疾人的收入相對較低,所以輪椅減振機構的結構要盡可能地簡單,以使輪椅的價格便宜。
1.2 減振器的發(fā)展歷史
世界上第一個有記載、比較簡單的減振器是1897年由兩個姓吉明的人發(fā)明的。他們把橡膠塊與葉片彈簧的端部相連,當懸架被完全壓縮時,橡膠減振塊就碰到連接在汽車大梁上的一個螺栓,產生止動。這種減振器在很多現(xiàn)代汽車懸架上仍有使用,但其減振效果很小。
1898年,第一個實用的減振器由一法國人特魯芬特研制成功并被安裝到摩托賽車上。該車的前叉懸置于彈簧上,同時與一個摩擦阻尼件相連,以防止摩托車的振顫。減振器的結構發(fā)展主要經歷了以下幾種發(fā)展形式:
加布里埃爾減振器,它是由固定在汽車大梁上的罩殼和裝在其里面的渦旋形鋼帶組成,鋼帶通過一個彈簧保持其張力,鋼帶的外端與車橋軸端連接,以限制由振動引起的彈跳量。
平衡彈簧式減振器,這是加到葉片彈簧上的一種輔助螺旋彈簧。由于每一個彈簧都有不同的諧振頻率,它們趨向于抵消各自的振顫,但同時也增大了懸架的剛性,所以很快就停止了使用。
空氣彈簧減振器,空氣彈簧不僅兼有彈簧和吸振的作用,而且常??墒∪ソ饘購椈?。第一個空氣彈簧減振器是1909年由英國考溫汽車工廠研制成功的。它是一個圓柱形的空氣筒,利用打氣筒可以把空氣經外殼上部的氣閥注滿空氣筒,空氣筒的下半部分容納一個由橡膠和簾布制成的膜片。因為它被空氣所包圍,所以其工作原理與充氣輪胎相似,它的主要缺點是常常泄漏空氣。
液壓減振器,第一個實用的液壓減振器是1908年由法國人霍迪立設計的。液壓減振器的原理是迫使液流通過小孔產生阻尼作用。通常的筒式減振器是由一個與汽車底盤固定的帶有節(jié)流小孔的活塞和一個與懸架或車橋固定的圓柱形貯液筒組成。門羅在1933年為赫德森制造的汽車裝用了第一個采用原始液壓減振器的汽車。到了二十世紀三十年代末,雙作用減振器在美國生產的汽車上被普遍采用。到了二十世紀六十年代,歐洲采用的杠桿式液壓減振器占了優(yōu)勢,這種減振器與哈德福特的摩擦式減振原理相似,但使用的是液流而不是摩擦緩沖襯墊。
麥弗遜支柱式減振器,隨著前輪驅動汽車的出現(xiàn),二十世紀七十年代以來,制造商開始采用麥弗遜式減振器。這種減振器是二十世紀六十年代通用公司麥弗遜工程師研制成功的。他把螺旋彈簧、液壓減振器和上懸架臂桿組成一個緊湊的部件。其主要優(yōu)點是體積小,適合前輪驅動汽車,可在與變速器組成一體的驅動橋上應用。另外,有一種電子控制減振器,能根據(jù)道路狀況、車速和驅動形式自動調節(jié)懸架軟、中、硬三種剛度。該減振器通過在汽車保險杠下方裝有一個帶聲納的測量部件監(jiān)測路面狀況,把測得的數(shù)據(jù)輸入處理單元,然后調節(jié)減振器中的按鍵,以改變液流通道的尺寸。
充氣式減振器是二十世紀六七十年代以來發(fā)展起來的一種新型減振器。充氣式減振器的特殊結構和充氣參數(shù),可以大大地降低噪音,并有利于保證活塞高速運動時的阻尼特征,同時減振器上的減振支柱實質上屬于雙筒結構,它除了阻尼減振還有如下附加功能:他和控制臂一起對車輪進行導向。
1.3雙筒式減振器國內外發(fā)展狀況和發(fā)展趨勢
目前國內汽車減振器大部分是筒式液阻減振器,其阻尼力主要通過油液流經空隙的節(jié)流作用產生。減振器的設計開發(fā)也由基于經驗設計加實驗修整的傳統(tǒng)方法向基于CAD/CAE技術的現(xiàn)代優(yōu)化設計方法轉變。20世紀50年代發(fā)展起來了液壓減振器技術,在雙筒式減振器內充入油液(0.3~0.5MPa)減振器的臨界工作速度相應提高,后來又發(fā)展了雙筒式減振器,它采用活塞閥體與底閥相配合的結構,在浮動活塞在缸筒間的一端形成的補償室內充入一定量的高壓氣體(2.0~2.5MPa)氮氣。與雙筒式減振器比,單筒充氣式減振器質量顯著減輕,安裝角度不受限制,但其制造精度要求和成本較高。
據(jù)調查,目前國內雙筒液阻減振器配套產能有過剩趨勢,生產高檔次減振器的不多。單筒充氣式減振器國內生產廠家正在消化吸收設計技術和提高制造工藝技術階段,產品質量還沒很過關。對于充氣式減振器的研究也主要集中在單缸充氣式汽車減振器方面。在郭孔輝院士的領導下,長春汽車研究所作了大量的試驗工作,積累了一些經驗。但由于橡膠的壽命不過關及設計、制造等多方面因素的影響,一直沒有形成比較成熟的技術。近幾年,由于高速公路的迅速發(fā)展,對舒適性的要求也越來越高,國內對充氣式減振器研究及產品開發(fā)工作又重新重視起來。哈爾濱鐵路局減速預調速研究中心和哈爾濱工業(yè)大學的高起波、曾祥榮兩位老師對充氣式減振器性能進行了理論分析和試驗;天津大學的馬國清、王樹新、卞學良等對充氣式減振器建立數(shù)學模型,建立計算機仿真程序,利用該程序可以得到參數(shù)變化對減振器性能的影響趨勢,取得一些較好的研究成果。后勤工程學院的晏華等設計的充氣式電流變減振器設計比較先進。有些廠家也投入人力物力對充氣式減振器關鍵部件進行開發(fā),如浙江瑞安東歐汽車零部件廠、貴州前進橡膠有限公司、寧波美亞達金屬塑料有限公司等,并具有了一定的生產規(guī)模。
國外工程機械主要配套件大多數(shù)都生產歷史悠久,技術成熟、供應充足、生產集中度高、品牌效應突出。目前世界上生產減振器最大的企業(yè),美國天納克(TA)汽車工業(yè)公司是世界最著名的減振器生產商,也是目前全球最大的專業(yè)生產減振器的廠家,其生產的充氣式減振器符合美國軍用標準。同時還不斷推出新的減振器,推動減振器技術不斷向更高技術水平發(fā)展。另外還有幾家較為先進的公司如:Ford和General Motors這兩家。這兩家公司生產的減振器能很好的解決汽車的安全性和舒適性這兩方面的要求,例如德國大眾公司的GTI、甲殼蟲,奔馳-戴姆勒·克萊斯勒汽車有限公司生產的C200均采用了雙筒油壓式減振器,在保證安全性的前提下充分提升了汽車的穩(wěn)定和操控性。
由于汽車在不同的行駛工況下對減振器的特性有不同的要求,可調阻尼減振器是筒式減振器技術發(fā)展的目標。目前國外已經開發(fā)有機械控制式的充氣式減振器,電子控制式的充氣式減振器,在個別高檔車還試用電流變液減振器,但電流變液減振器的工作溫度范圍窄-25~125℃,其強度和化學穩(wěn)定性較差,影響其工作的可靠性。充氣式減振器相比電流變液減振器,不需要特殊的高壓供電裝置,成本低、使用安全、穩(wěn)定性強[9]。目前最先進的充氣式減振器的響應時間約10ms,需進一步提高。充氣式減振器有很好的運用前景,是半主動或主動懸架較好的配置,但是尚需在縮短響應時間上改進。德國奧迪推出的2.7T越野車,使用了雙充氣式減振器,奔馳-戴姆勒·克萊斯勒汽車有限公司生產的300C和Jeep4700均采用了充氣式減振器。充氣式減振器是一個較為新興的技術,可同時提高車輛的舒適程度、駕駛性能和安全性能。由于車輪控制得到改善,車輛的安全性和可靠性得到提升;通過控制車身運動,提高駕駛平順性,并使操作更精確、反應更迅速;在剎車和加速過程中減少乘員“前沖”和“后仰”;改善負荷轉移特性,在車輛高速行駛中突然變向時,可提供更好的防側翻控制;由于減小了路面反沖力,使駕駛更為安靜、精確。正是由于這些特點,充氣式減振器首先在中高級轎車上得到了應用。
充氣式減振器的發(fā)展前景,國外對充氣式減振器的研究已經發(fā)展到電子控制式減振器。我國對減振器的研究主要集中在單筒充氣式減振器方面,而且發(fā)展比較緩慢。我們應當在前人對充氣式減振器研究的基礎上更加深入地對其進行分析和研究,努力縮短和發(fā)達國家的差距。對充氣式減振器的研究能有效的提高我國汽車工業(yè)的制造水平,降低汽車的制造成本,對中國經濟的快速發(fā)展大有益處。
1.4 研究的主要內容及方法
通過Autocad軟件的輔助,設計一種用于老年人輪椅并且符合技術要求,具有良好經濟性與實用性的雙筒液壓式減振器。通過大量的社會實際調查研究和圖書館查閱資料,設計計算以及老師的指導下,按照任務書的要求最終完成設計工作。在設計的過程中參考國內外相關的文獻資料以及借鑒相關企業(yè)的產品,預期的設計產品能夠符合理論設計要求,各項技術指標符合要求,并且將生產成本降到最低。
第2章 減振器的類型和工作原理
2.1 減振器的類型
懸架中用的最多的減振器是內部充有液體的液力式減振器。輪椅和車輪振動時減振器內的液體在流經阻尼孔時的摩擦和粘性液體的摩擦形成了振動阻尼,將振動能量轉化為熱能,并散發(fā)到周圍的空氣中去,達到迅速衰減振動的目的。如果能量的消耗僅僅只是在壓縮行程或者是在伸張行程進行,則把這種減振器稱為單向作用減振器;反之稱為雙向作用減振器。后者因為減振作用比前者好而得到廣泛應用。
減振器大體上分為兩大類,即摩擦式減振器和液力減振器。摩擦式減振器利用兩個緊壓在一起的盤片之間相對運動時的摩擦力提供阻尼。但是由于庫侖摩擦力隨相對運動速度的提高而減小,并且很容易受到油、水等的影響,無法正常工作,無法滿
足平順性的要求,因此雖然具有質量小、造價低、容易調整等優(yōu)點,但現(xiàn)在已經很少采用這類減振器。
液力減振器最早出現(xiàn)于1901年,有兩種主要的結構形式分別是搖臂式和筒式。懸架中用的最多的減振器是內部充有液體的液力式減振器。所以我選擇筒式減振器。而在筒式減振器中,常用的三種形式是:雙筒式、單筒充氣式和雙筒充氣式。我選擇雙筒式液力減振器。
2.2 減振器的工作原理
懸架系統(tǒng)中由于彈性元件受沖擊產生振動,為改善輪椅行駛平順性,懸架中與彈性元件并聯(lián)安裝減振器用來衰減振動。液力減振器在汽車懸架系統(tǒng)中廣泛應用,其作用原理是利用液體流動的阻力來消耗振動的能量。當車架與車橋相對運動時,活塞在缸筒內上下移動,減振器殼體內的油壓便反復地從一個內腔通過一些窄小的孔隙流入另一個內腔。此時,孔壁與油液間的摩擦及液體分子內摩擦便形成對振動的阻尼,使車身和車架的振動能量轉化為熱能而被油液和減振器殼體所吸收,最后散到大氣中去。減振器的阻尼力大小隨車架與車橋的相對運動速度的增減而增減,并且與油液的粘度有關。
減振器與彈性元件承擔著減振和緩沖擊的任務,阻尼力過大,將使懸架彈性變壞,甚至使減振器連接件損壞,因面要調節(jié)彈性元件和減振器這一矛盾。
1、壓縮行程
車橋和車架相互靠近,減振器阻尼力較小,以便充分發(fā)揮彈性元件的彈性作用,緩和沖擊。這時,彈性元件起主要作用。
2、懸架伸張行程
車橋和車架相互遠離,減振器阻尼力應大,迅速減振。
3、相對速度
當車橋或車輪與車橋間的相對速度過大時,要求減振器能自動加大液流量,使阻尼力始終保持在一定限度之內,以避免承受過大的沖擊載荷。
在汽車懸架系統(tǒng)中廣泛采用的是筒式減振器,且在壓縮和伸張行程中均能起減振作用叫雙向作用式減振器。還有采用新式減振器,它包括充氣式減振器和阻力可調式減振器.
2.3 雙筒式液壓減振器的工作原理及優(yōu)點
主要構成有:密封氣室、浮動活塞、工作活塞、封圈、壓力閥板、活塞、速度閥板、活塞桿等。
雙向作用筒式減振器工作原理說明。在壓縮行程時,指汽車車輪移近車身減振器受壓縮,此時減振器內活塞3向下移動。活塞下腔室的容積減少,油壓升高,油液流經流通閥8流到活塞上面的腔室(上腔)。上腔被活塞桿1占去了一部分空間,因而上腔增加的容積小于下腔減小的容積,一部分油液于是就推開壓縮閥6流回貯油缸5。這些閥對油的節(jié)約形成懸架受壓縮運動的阻尼力。減振器在伸張行程時,車輪相當于遠離車身,減振器受拉伸。這時減振器的活塞向上移動?;钊锨挥蛪荷?,流通閥8關閉,上腔內的油液推開伸張閥4流入下腔。由于活塞桿的存在,自上腔流來的油液不足以充滿下腔增加的容積,主使下腔產生一真空度,這時儲油缸中的油液推開補償閥7流進下腔進行補充。由于這些閥的節(jié)流作用對懸架在伸張運動時起到阻尼作用。由于伸張閥彈簧的剛度和預緊力設計的大于壓縮閥,在同樣壓力作用下,伸張閥及相應的常通縫隙的通道載面積總和小于壓縮閥及相應常通縫隙通道截面積總和。這使得減振器的伸張行程產生的阻尼力大于壓縮行程的阻尼力,達到迅速減振的要求。
(2-1)
雙筒式減振器具有如下的優(yōu)點:使用廣泛、制造成本低,使結構簡化,重量減輕、性能也較為穩(wěn)定,而且是雙向作用,在壓縮與伸張的狀態(tài)下都有設計好的阻尼力,所以在各個工況
2.4 本章小結
主要介紹減振器種類、分類方法和具體的工作原理以及在現(xiàn)代汽車中的應用。在闡明雙筒式液壓結構特點和應用,得出雙筒式液壓減震器功能上的優(yōu)點和缺點,為后文的設計計算做好基礎。
第3章 輪椅減振器示功特性分析
3.1 建立模型
3.1.1輪椅減震器的動力學模型
把道路不平假定為按正弦曲線的變化形式,并且只考慮垂直方向的運動,這樣就可以簡化模型,MJ試驗臺通過提供簡諧運動模擬實際路況。MJ的動力學模型可簡化為一個單自由度的二階受迫振動,即:
(2-1)
其中m為質量,單位kg, c為阻尼系數(shù),k為彈性系數(shù)。
圖2-1 路況簡化圖
3.1.2輪椅減震器示功圖測試模型
由于示功圖測試主要是測試減震器液壓阻尼所吸收的能量,可對(2-1)式作
進一步的簡化。規(guī)定測試時不裝緩沖彈簧,即上式中的k=0,得:
(2-2)
上式中的m為隨減震器一起移動的質量,在示功圖測試中,由于傳感器固定在橫梁上,滑塊和減震器外筒運動所產生的慣性力未作用在測試的力傳感器上。傳感器測得的僅僅是部分油液運動所產生的慣性力。因此可忽略慣性力的影響,這時有:
(2-3)
即示功圖的測試模型簡化成了純阻尼模型,。由于復原行程與壓縮行程有不同的阻尼系數(shù),因此有:
(2-4)
示功圖測試臺采用曲柄滑塊機構提供近似的簡諧運動,曲柄滑塊機構的運動學方程為:
(2-5)
式中,r為曲柄半徑,l為連桿長度,ω為曲柄旋轉的角速度。
3.2 輪椅減震器示功圖
3.2.1簡化測試模型的示功圖
由(2-4)式描述的線性阻尼模型的示功圖如圖2-2所示。MJ中國汽車行業(yè)標準所列出的示范圖形與此相同。示功圖曲線所包容的面積即為阻尼吸收的能量。減震器受簡諧激振時, 示功圖是相對Y軸的對稱圖形。從示功圖中,不僅可以反映減震器壓縮阻力、復原阻力的大小和Pf/Py的比值。更重要的是通過示功圖曲線的形狀,描繪出了減震器的整體工作性能。曲線應該飽滿,沒有畸變和突變。
圖2-2 線性阻尼模型的示功圖
3.2.2實測示功圖分析
圖2-3 幾種有問題的示功圖
根據(jù)汽車行業(yè)標準,具體復原阻力和壓縮阻力應符合圖樣要求值,偏差為±25 %(后減震器)和±30 %(前減震器)。速度特性圖反映了減震器的阻尼力與速度之間的變化關系,線性阻尼與速度之間呈線性關系,以及實際阻尼系數(shù)的非線性,造成正反向速度的阻力變化曲線不重合和非線性。實際MJ阻尼表現(xiàn)為非線性特性,其與減震器的速度、加速度,以及溫度、油液粘度及油液在減震器內的流動特性有關,加之慣性、摩擦力等因素的影響產生遲滯誤差。由于各相對運動件之間存在摩擦力。又由于減震器的內腔容積是變化的,油氣共存。滑柱與外筒的滑配以及油封的作用基本上對內腔的空氣起封閉作用,形成一定的空氣阻力。因此實際模型還應包括空氣阻力和摩擦力的影響。即:
(2-6)
式中,為空氣彈簧剛度,為摩擦力,視其為常量(實際上它是隨速度變化的)。
圖2-3(a)表示復原阻尼力過小,出現(xiàn)這種現(xiàn)象的原因可能是復原節(jié)流孔過大;阻尼器內泄漏嚴重;流通閥關閉不嚴;復原閥開啟過早或關閉不嚴;試驗速度偏低以及油液偏稀所致。
圖2-3(b)表示壓縮阻力過小,出現(xiàn)這種現(xiàn)象的原因可能是壓縮節(jié)流孔偏大;阻尼器內泄漏嚴重;補償閥關閉不嚴;壓縮閥開啟過早或關閉不嚴;底閥脫落等原因所致。
圖2-3(c)是無液壓阻尼,僅有機械摩擦,這類缺陷通常出現(xiàn)在前阻尼器上,其阻力實際上是油封和內外套筒間的摩擦而非液壓阻尼。摩擦阻力一般要小于技術要求值,但若達到與技術要求接近,則說明該阻尼器摩擦阻力過大,不能適應摩托車的需要。出現(xiàn)這種現(xiàn)象的原因可能是阻尼器內油液過少;阻尼孔過大;油封過緊;或套筒配合、導向不良。
圖2-3(d)復原行程有空程,這類示功圖表現(xiàn)為復原行程初期無阻力,運行一定距離后阻力才建立。出現(xiàn)這類現(xiàn)象的直接原因是受壓腔未被油液充滿,需待該腔中的空氣被排除后,液壓阻力才能建立起來,這類缺陷可能因底閥座、補償閥、壓縮閥過大的泄漏引起(如閥片翹曲、閥座不平、密封面間墊入細屑等);也可能因活塞上流通閥片關閉不暢引起。
圖2-3(e)是壓縮行程有空程,特點是壓縮行程初期無壓縮阻力,運行一定距離后,壓縮阻力才能建立。產生這類缺陷的原因可能是壓縮初期補償閥關閉不嚴;也可能是復原行程時補償閥開啟不良所致。當阻尼器內油液不足時也常導致這種現(xiàn)象的產生。
圖2-3(f)壓縮終端處的阻力陡增,對前阻尼器來說,這是正常現(xiàn)象。此時阻尼器運行于壓縮終端的液壓限位區(qū),理應產生強勁的液壓緩沖阻力,防止阻尼器剛性碰撞,但對后阻尼器來說,這就是非正常現(xiàn)象了,產生這類缺陷的原因是阻尼器內油液過多所致,特別當阻尼器溫度升高,油液膨脹后,此類現(xiàn)象更常遇到。
綜上所述,過大的摩擦力與加工精度和裝配質量有很大關系,也是造成日后MJ漏油的主要原因之一,因此希望在今后的MJ測試標準修訂中增加摩擦力的測試。
總之,示功圖是阻尼器質量檢驗的依據(jù),又是阻尼器缺陷分析的第一手材料。
因此,通過試驗對減震器進行示功測試的意義也就在此。
第4章 雙筒式液壓減振器的設計
4.1 雙筒式液壓減振器的設計參數(shù)
筒式減振器設計中涉及的參數(shù)較多,大致可以分為如下幾類:
(1)整車參數(shù)
包括輪椅全重、懸置質量、車輛縱向的轉動慣量、輪椅懸架剛度、輪椅振動固有頻率(圓頻率)、減振器個數(shù)等。
(2)幾何布置參數(shù)
包括減振器的位置、彈性元件位置等。
(3)減振器結構參數(shù)
包括減振器長度、減振器活塞直徑、活塞桿直徑、閥孔位置、閥孔個數(shù)、閥孔直徑、減振器筒徑、工作缸直徑與長度、儲液筒直徑與長度等。
(4)減振器工作參數(shù)
包括減振器的工作長度、限壓閥閥門彈簧的剛度、彈簧預緊壓縮量、閥門附加最大行程、活塞行程、活塞最大線速度、活塞正反最大阻力、開閥壓力、減振器阻尼系數(shù)等。
這些參數(shù)在設計中有的是作為已知量,有的是作為待確定量,所以選擇參數(shù)時,要考慮的情況比較多,但一般來說,主要包括活塞面積計算、閥門機構設計計算、阻尼比或者阻尼系數(shù),最大卸荷力等參數(shù)的計算,尺寸設計計算,強度校合,壽命計算等?;钊娣e按反行程的最大阻力來確定,反行程最大阻力與活塞最大線速度有關,活塞最大線速度取決于懸架裝置結構。閥門機構設計主要包括常通孔面積計算和閥門彈簧的計算。減振器內通常有兩個常通孔,活塞上常通孔和補償閥座上的常通孔?;钊铣M酌娣e按壓縮行程最大活塞線速度即開閥速度計算。設計減振器時,阻尼比的確切值是未知的,它只能通過測定減振器工作時的衰減振動情況計算求得。但是阻尼比的大小又關系到活塞最大線速度、減振器阻尼力等物理量的值,所以,在設計過程中通常從減振器吸收振動能量的角度來估計阻尼比的值。
4.2 雙筒式減振器參數(shù)和尺寸的確定
4.2.1 液壓器工作缸直徑D的確定
根據(jù)伸張行程的最大卸荷力計算工作缸直徑D為:
(4.1)
式中:[p]為工作缸最大允許壓力,取3~4MPa,為連桿直徑與缸筒直徑之比,單筒式減震器取,取。根據(jù)式(3.1)計算得:
由上式計算得出工作缸直徑的理論值,再依據(jù) QC/T4911999《汽車筒式減震器尺寸系列及技術條件》,如表 4.1。將工作缸直徑D圓整為標準系列直徑為30mm;初選壁厚取為2mm,材料選用20 鋼。
表4.1 筒式減振器工作缸直徑 (mm)
工作缸直徑D
20
30
40
(45)
50
65
注:表中有括號者,不推薦使用。
由于已經知道了減震器的工作缸直徑D=30mm,根據(jù)表4.2確定減震器的復原阻力在1000—2800之間和壓縮阻力不大于1000,可以確定其大概的復原阻力和壓縮阻力分別是1800N和700N。
表4.2 復原阻力和壓縮阻力取值 (N)
工作缸直徑D(mm)
復原阻力
壓縮阻力
20
200—1200
不大于600
30
1000—2800
不大于1000
40
1600—4500
400—1800
(45)
2500—5500
600—2000
50
4000—7000
700—2800
65
5000—10000
1000—3600
4.2.2 雙筒式減震器活塞行程的確定
減震器活塞行程即液壓缸的工作行程。液壓缸的工作行程長度,可以根據(jù)執(zhí)行機構實際工作的最大行程來確定,并參照表4.3和表4.4設計要求來選取標準值,故選取活塞行程為180mm。
表4.3 減震器設計尺寸(mm)
工作缸
基長
駐液筒最大外徑
防塵罩最大外徑
壓縮到底長度
最大拉伸長度
L1
L3
L2
直徑D
HH型
CG型
HG/GH型
允差
允差
20
90
70
80
34
40
+3
負值不限
+4
負值不限
正值不限
-3
正值不限
-4
30
120
86
103
48
56
40
160
120
140
65
75
(45)
70
80
50
190
120
155
80
90
65
210
130
170
90
102
注:1、基長() 為設計尺寸,其值為 。 2、S為行程。
3、壓縮到底長度 。 4、最大拉伸長度。
4.2.3 液壓缸壁厚、缸蓋、活塞桿和最小導向長度的計算
1、液壓缸的壁厚的計算
液壓缸的壁厚一般指缸筒結構中最薄處的厚度。當缸筒壁厚d與內徑D的比值小于0.1時,稱為薄壁缸筒。壁厚按照材料力學薄壁圓筒公式計算。
計算公式如下式:
(4.2)
式中:—實驗壓力,一般取最大工作壓力的(1.25~1.5)倍;
d—液壓缸壁厚;
D—液壓缸內徑:
—缸筒材料的許用應力。其值為:鑄鐵:=100~110MPa。
計算得:
表4.4 減振器活塞行程 (㎜)
工作缸直徑D
活 塞 行 程 S
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
20
-
-
-
-
-
-
-
-
-
-
-
30
-
-
-
-
-
-
-
-
-
-
-
-
-
-
40
-
-
-
-
-
-
-
-
-
-
-
-
(45)
-
-
-
-
-
-
-
-
-
-
50
-
-
-
-
-
-
-
-
65
-
-
-
-
-
-
在中低壓液壓系統(tǒng)中,按上式計算所得的液壓缸壁厚往往很小,是剛體的剛度不夠,如在切削過程中的變形、安裝變形等引起液壓缸工作過程卡死或漏油。因此一般不做計算,按經驗取值,然后進行校核。
缸筒內徑確定后,由強度條件確定壁厚;然后求出缸筒外徑D1。
當缸筒壁后厚與內徑D的比值小于0.1時,稱為薄壁缸筒壁厚的校核按照材料力學薄壁圓筒公式計算。在設計中選定的缸筒壁厚為2mm,內徑D為30mm。
因為比值小于0.1,故
(4.3)
式中:p—液壓缸的最大工作壓力;
—缸筒材料的抗拉強度極限;
n—安全系數(shù),一般取n=5;
—活塞桿材料的許用應力,=。
取設計中的工作壓力3MPa內徑D已知為30mm。查閱GB699—88取=376MPa。
==75.2
=0.6
設計的壁厚為2mm,符合強度要求。
2、液壓缸的穩(wěn)定性驗算
按照材料力學的理論,一根受壓的直桿,在其軸向負載超過穩(wěn)定臨界力時,即失去原有狀態(tài)下的平衡,稱為失穩(wěn)。對液壓缸其穩(wěn)定條件為
(4.4)
式中:—液壓缸最大推力;
—液壓缸的穩(wěn)定臨界力;
—穩(wěn)定性安全系數(shù),一般取=2~4。
液壓缸的穩(wěn)定臨界力值與活塞桿和缸體的材料、長度、剛度、及其兩端的支撐狀況等因素有關。
因為當時要進行穩(wěn)定性校核,依據(jù)長度折算系數(shù)知
故需要對液壓缸進行穩(wěn)定性驗算:
(4.5)
(4.6)
得
表4.5 穩(wěn)定校核相關系數(shù)
材 料
a
b
λ1
λ2
鋼(Q235)
3100
11.40
105
61
鋼(Q275)
4600
36.17
100
60
硅 鋼
5890
38.17
100
60
鑄 鐵
7700
120
80
—
由下式計算:
(4.7)
=
=2.2×N
經過校核,液壓缸穩(wěn)定性符合要求。
3、缸蓋厚度的計算
一般液壓缸多為平底缸蓋,其有效厚度t按強度要求可以用下面兩式進行近似計算。
無孔時 (4.8)
有孔時 (4.9)
式中:t—缸蓋有效厚度(m);
D2—缸蓋止口內徑(m);
d0—缸蓋孔的直徑(m);
材料許用應力;
—實驗壓力;
因為活塞桿的直徑為20mm,所以,而儲液筒的最大外徑48mm,除去筒壁厚度3m
經計算得
4、活塞桿的計算
減振器活塞桿(或前叉管)承受來自活塞和連接部件拉伸和壓縮載荷以及或大或小的側向力。因其表面粗糙度對減振器滲漏油影響較大,在減振器所有零部件中被列為A類件。其要求必須有足夠的強度、剛度和較低的表面粗糙度。
活塞桿(或前叉管)材料一般采用35、40、45、40Cr等冷拉圓鋼。其硬度為HRC18~HRC32。取活塞桿的材料為45鋼,硬度為HRC18。
由于活塞的行程S為200mm,活塞桿的長度應該大于活塞的行程,初步確定活塞桿的長為220mm。
5、對桿強度進行校核
活塞桿的強度校合,前面已經得知活塞的復原阻力和壓縮阻力分別是1800N和700N。
在確定活塞桿直徑后,還需要滿足液壓缸的穩(wěn)定性及其強度要求。
液壓缸的穩(wěn)定性驗算 按照材料力學的理論,其穩(wěn)定條件為
(4.10)
式中:—液壓缸最大推力;
—液壓缸的穩(wěn)定臨界力;
—穩(wěn)定性安全系數(shù),一般取=2~4
液壓缸的穩(wěn)定臨界力值與活塞桿和缸體的材料、長度、剛度、及其兩端的支撐狀況等因素有關。
當?shù)谋戎荡笥?0時要進行穩(wěn)定性校核,依據(jù)長度折算系數(shù)知
(4.11)
(4.12)
由歐拉公式計算
符合要求。
(4.13)
—空心活塞桿內徑,對實心桿,。
活塞桿材料的許用應力,為材料的屈服強度,安全系數(shù)n=1.4~2,系數(shù)越高,安全性越好,取n為2。
故,符合要求。
6、對壓桿穩(wěn)定性進行校核
當活塞桿的長徑比,且活塞桿承受壓力時,需要對壓桿穩(wěn)定性進行校核。
由上式可知:
桿屬于中長壓桿,只有細長桿才能應用歐拉公式來計算臨界力,因此采用直線公式計算臨界力。
(4.14)
在工程中為了簡便計算,對壓桿的穩(wěn)定計算常采用折減系數(shù)法。引入,則用穩(wěn)定安全系數(shù)表示的穩(wěn)定條件,可以表示為
(4.15)
式中:—工作應力;
—穩(wěn)定許用應力。
在工程中常將穩(wěn)定需用應力表示為強度許用應力與一個小于1的系數(shù)的乘積來表示,即
(4.16)
式中:—折減系數(shù)。
查機械設計手冊知,根據(jù)表可以知道桿的折減系數(shù)為。
表4.6 壓桿的折減系數(shù)
柔度
值
Q235鋼
16錳鋼
鑄鐵
木材
0
1.000
1.000
1.00
1.00
10
0.995
0.993
0.97
0.99
20
0.981
0.973
0.91
0.97
30
0.958
0.940
0.81
0.93
40
0.927
0.895
0.69
0.87
得出
(4.17)
壓桿的穩(wěn)定條件為
由式(4.13)和式(4.17)知壓桿符合穩(wěn)定條件。
7、最小導向長度的確定
當活塞桿全部外伸時,從活塞支撐面中點到導向套滑動面中點的距離稱為最小導向長度。如果導向長度過小,將使液壓缸的初始撓度增大,影響減振器工作的穩(wěn)定性,因此必須要保證有一定的導向長度。對于一般液壓缸,最小導向長度H應滿足式(4.18)的要求:
(4.18)
式中:L—液壓缸的最大行程;
D—缸筒內徑。
4.2.4 液壓缸的結構設計
1、缸體與缸蓋的連接形式
缸體端部與缸蓋的連接形式與工作壓力、缸體材料以及工作條件有關。主要的幾種連接形式有:法蘭連接、螺紋連接、外半環(huán)連接和內半環(huán)連接。選擇使用螺紋連接。原因主要有幾點:(1)結構簡單、成本低;(2)容易加工、便于拆裝;(3)強度較大、能承受高壓。
2、活塞桿與活塞的連接形式
活塞在徑向由活塞桿和壓力閥底座進行定位,軸向由活塞桿進行定位即可,不需要特殊的連接結構。
3、活塞桿導向部分的結構
活塞桿導向部分的結構,包括活塞桿與端蓋、導向套的結構,以及密封、防塵和鎖緊裝置等。在本設計中采用上密封蓋進行直接導向。
4、活塞及活塞桿處密封圈的選用
活塞及活塞桿處密封圈的選用,應根據(jù)密封的部位、使用的壓力、溫度、運動速度的范圍不同而選取不同類型的密封圈。在本設計中主要選用O型密封圈,具體尺寸根據(jù)相關行業(yè)標準進行選用。
5、液壓缸的安裝連接結構
液壓缸的安裝連接結構包括液壓缸的安裝結構、液壓缸進出油口的連接等。液壓缸的安裝形式,頭部法蘭和按壓連接。
6、活塞環(huán)
活塞環(huán)主要起密封作用,防止油液從高壓腔泄漏到低壓腔,減小內泄漏,以保證阻尼效果?;钊h(huán)靠自身的彈力貼緊工作缸的內腔,可使工作缸和活塞的加工及配合精度適當降低,有利于大批量生產。
活塞環(huán)材料常用:尼龍1010、聚四氟乙烯、酚醛樹脂、填充聚四氟乙烯及三層復合材料其工藝應保證兩端面與中心線垂直。兩端面平行度不大于0. 03、表面粗糙度Ra0.8。外觀不應有裂紋、毛刺、縮孔及折皺。根據(jù)活塞環(huán)的密封原理,在設計上應考慮活塞環(huán)徑向厚度、開口形狀、側間隙、背間隙以及因材料不同時的活塞環(huán)圓周線漲量?;钊h(huán)裝入工作缸要求進行透光檢驗,其貼合面不小于85%。
7、液壓缸主要零件的材料和技術要求
(1)缸體采用45號鋼;調質HRC28—33;表面法蘭處理;缸體和端蓋采用螺紋連接。
(2)活塞采用40Cr;調質HRC28—35;上下面高頻淬火HRC40—45;活塞外徑用橡膠密封圈密封時取f7~f9配合。
(3)活塞桿采用40Cr;調質HRC28—33;表面整體氮化,深度0.4—0.75;使用磁力探傷避免有裂紋;活塞桿和活塞采用H7/t6配合。
(4)缸蓋采用45號鋼;表面陽極氧化處理。
(5)浮動活塞采用45號鋼;熱處理后硬度為HRC28—33;法蘭。
4.2.5 活塞及閥系的尺寸計算
1、活塞尺寸的計算
活塞的寬度B由公式得,取B=19mm。導向套滑動面的長度A,在D<80mm時,取,當D>80mm時,取,所以取A=1.0D,A=30mm符合要求,活塞的內徑取6mm。
2、閥系的計算
在液壓系統(tǒng)中,用于控制系統(tǒng)中液流的壓力、流量和液流方向的元件稱為液壓控制閥。在減振器工作的時候,閥的作用是只允許液流沿一個方向通過,而反向液流被截止。故活塞上的閥系均為單向閥,對單向閥的主要性能要求是液流正向通過時壓力損失要??;反向截止時密封性要好,動作靈敏,工作時無沖擊噪聲小??紤]到減振器的內部尺寸較小,工作壓力較低,同時活塞的尺寸本身較小,如采用鋼球式或錐閥式單向閥就會使閥心的尺寸過小,從而不能保證其強度。故設計時采用直通式單向閥。單向閥所用的彈簧,主要用來克服摩擦力,閥板的重力和慣性力,使閥板在反向流動時能迅速關閉,單向閥開啟壓力一般為0.03~0.05MPa。
(1) 閥孔的結構設計
當進、出油口前后壓力差較大,閥口流速過高時,出油口流場中的局部壓力可能低于油液中所溶空氣的分離壓,使溶解于油液中的空氣分離出來或者局部的壓力低于油液的飽和蒸汽壓,使油液汽化。兩種情況都會使油液中產生氣泡,使油液的質量變差,同時這些氣泡隨液流到壓力較高處會瞬時壓破,產生噪聲,這種噪聲稱為氣穴噪聲,為了改善這一狀況,在過程上主要是對閥孔的結構進行改進,將液壓油的壓力分級降低,逐步衰減。故在設計的時候,進、出油口的尺寸比閥孔的內徑稍大,油孔直徑與內徑相差一定的數(shù)量形成階梯狀以降低每一級的工作壓差。
(2) 閥孔的尺寸計算
汽車行駛平順性的優(yōu)劣直接關系到乘員的舒適性"并涉及汽車動力性和經濟性的發(fā)揮" 影響到零部件的使用壽命" 所以它是同類車在市場競爭爭取優(yōu)勢的一項重要性能指標而減震器作為汽車懸架的阻尼元件之一"其作用是確保車輛具有良好的行駛平順性和安全性" 因此汽車阻尼器的質量將直接影響汽車的使用性能$ 根據(jù) 減震器復原閥和補償閥以及 減震器內特性的常通孔或閥結構所滿足的制約關系" 利用加權因子將由兩個制約關系建立的目標函數(shù)組合成統(tǒng)一的目標函數(shù)"選擇活塞桿直徑%復原閥片厚度%壓縮閥片厚度%常通孔截面寬度%常通孔截面厚度作為優(yōu)化參數(shù)來保證減震器在復原行程和壓縮行程上不發(fā)生空程性畸變
首先計算壓力閥孔的尺寸壓力閥孔取6個,均布。進出油口直徑D應滿足下式:
(4.19)
式中:—閥的公稱流量;
—進、出油口的許用流速,一般取=6m/s。
活塞的速度一般為0.15~0.3m/s,取0.3m/s。
由于在活塞上孔是均布的8個小孔,每個孔的直徑為d,小孔的總面積應等于進、出油孔的面積。
由于 故
將d圓整為2。
孔的長度一般根據(jù)經驗公式(3.23)來確定
(4.20)
取。
單向閥孔的尺寸比壓力閥略大,計算方法類似。得出單向閥孔徑為3mm,孔長為。
閥片在減振器中起截流的作用,保證活塞或底閥兩端面的油腔建立高壓及疏通油液,產生節(jié)流壓差,形成阻尼力。由于閥片與閥在長期高頻振動和彎曲變形中要保持密封可靠,不允許出現(xiàn)殘余變形。要求閥片平面度為0.02,兩端面平行度0.01~0.02,維氏硬度HV486~HV600及較高的彈性極限。閥片材料一般采用65Mn、60Si2Mn、5CrMnMo等鋼帶材料,用精密沖壓而成。再進行模壓熱定形工藝。一般加熱到380℃±10℃,保溫1小時定形。溫度過高、時間過長會導致硬度下降。
單向閥板尺寸根據(jù)要求和配合尺寸選用外徑為28mm,內徑為6mm,厚度為1.2mm。壓縮閥板的尺寸定為外徑為17.5mm,內徑為13mm,厚度為1mm。壓力閥板上預留壓力閥彈簧座,壓縮閥板與壓縮閥板導向套緊密結合。
單向閥彈簧在選用的時候根據(jù)彈簧特性。考慮到減振器在壓縮的行程中閥板的受力圖為一曲線。故選用圓錐螺旋壓縮彈簧。參考GB4357-89選用最小內徑為12,最大外徑為21,鋼絲直徑為0.8,采用材料為碳素鋼。壓力閥彈簧GB4357-89采用圓柱螺旋壓縮彈簧。下式為彈簧的旋繞比為:
(4.21)
C是彈簧的一個重要參數(shù),它直接影響到彈簧的強度、材料的利用率及彈簧加工時的難易。一般取C=4~16根據(jù)表3.6可以確定直徑應小于2㎜,取直徑為1.6㎜,C的取用范圍是5~10,取C=10,中徑D2=16
外徑
內徑
節(jié)距
工作圈數(shù) 取
總圈數(shù)
自由度
間距
螺旋升角
鋼絲展開長度
表4.7 旋繞比C的選用范圍
d/㎜
0.2~0.4
0.45~1
1.1~2
2.5~6
7~16
18~42
C
7~14
5~12
5~10
4~9
4~8
4`6
4.2.6 密封元件和工作油液的確定
1、密封元件
自然界泥水隨著氣候、車輛行駛狀態(tài)和地理環(huán)境特點的變化,不斷與減振器密封部發(fā)生接觸。接觸結果一方面侵蝕和磨損減振器密封部外露面,另一方面,在一定條件下會穿越密封部而進入減振器內,惡化減振器性能、降低減振器壽命。當油封唇口半徑小于0.2mm時,由于油封失去潤滑油膜,活塞桿和油封之間摩擦加劇。過大的摩擦力會導致油封迅速失去抵抗泥水的功能。因此,0.2mm為油封唇口半徑最佳值。自然界泥水進入減振器內部后,對減振器產生復雜、多方面的影響:
(1)與工作液混合,改變油液粘度系數(shù),影響正常阻尼發(fā)揮;
(2)影響工作液粘溫特性,改變減振器額定設計阻尼;
(3)惡化其泡沫特性,影響正常阻尼輸出并引發(fā)高頻異響;
(4)在截流部形成無規(guī)律堵塞,導致硬阻澀,惡化整車乘座感;
(5)其微粒使減振器內摩擦部位加速磨損,引發(fā)內部泄漏,降低輸出阻尼,導致疲軟感。
表4.8 密封尺寸
項目
尺 寸 (mm)
d1
8
10
12
18
20
22
25
26
d2max
6.6
8.4
10.2
15.8
17.7
19.6
22.5
23.4
自然界泥水進入減振器內部,導致工作液性能惡化和內部零件過度磨損。隨工作時間推移,減振器內各零、部件工作關系迅速惡化,這種惡性循環(huán)將急劇降低減振器的耐久性能。油封裝配過程中,為避免劃傷油封唇口、裝配不到位,在油封裝配孔或軸的設計上需要特別注意。車輛減振器冷成型封口工藝對成品密封性、強度和外觀質量都有著嚴格的要求。如封口工藝不合理,會使零件出現(xiàn)表面脫落、裂紋及表面材料堆積、起皺。在高速高壓工作狀態(tài)下油封、導向組件將軸向竄動,引發(fā)彈性緩沖件早期損壞,更嚴重的是,過大減薄外筒管材壁厚,將降低減振器的抗拉強度。與電弧焊熱成型封口工藝比較,冷成型封口成本低廉、操作簡單,并可有效避免橡膠密封件過熱失效。行星強力旋壓工藝可從根本上解決密封、強度和外觀質量等問題,達到預期目的。
需要特別說明的是,減振器油封分總成是減振器的關鍵部件之一。油封分總成的材料和工藝路線隨著技術的新發(fā)展和企業(yè)的實際情況而多種多樣。圖4.1和表4.8說明的僅僅是比較典型的情況。
圖4.2 密封結構
2、油液的選取
由于大多數(shù)減震器是通過油的流動阻尼力來吸收沖擊和震動能量,并轉化為油的熱量散發(fā)掉。所以,阻尼力與油的粘度有著密切的關聯(lián),而油的粘度是隨溫度變化的。摩托車使用時間的長短,使用時的環(huán)境溫度等都是不同的。因此,為適應摩托車運行地域的各種氣候條件,對減震器油提出了以下技術要求:
(1)減震器油不但要具有良好的粘溫性能以及較高的粘黏度指數(shù),還應有低的凝固點。當環(huán)境溫度發(fā)生變化或隨著工作時間的延長,減震器油本身溫度變化時,其油的粘度變化應很??;
(2)在我國境內使用的減震器油,其凝點不得低于-40℃。也就是說,當進入嚴寒冬季氣溫下降至0~-40℃時,其油液應不失去流動性;
(3)減震器油在所有的使用范圍內(包括高速、滿負荷以及超載行駛等特殊情況),要盡可能少的汽化損失,即所謂的汽化小性能;
(4)當減震器油與空氣接觸時,必須具有抗氧化穩(wěn)定性和抗油氣混合穩(wěn)定性,即所謂的良好的工作穩(wěn)定性能;
(5)由于含有雜質的減震器油液會在摩托車行駛過程中,很快將活塞桿劃傷或造成油封刃口殘缺,從而導致漏油。所以,減震器油液一定要保持絕對的清潔;
(6)減震器油必須具有良好的防銹和抗磨作用。
根據(jù)GB7631.2—87,選用型號為L—HFC的液壓油。該產品通常為含乙二醇或其他聚合物的水溶液,低溫性、粘溫性和對橡膠的適用性好。他的耐燃性好,通常用于低壓和中壓系統(tǒng)中,對溫度適應性好,使用溫度為-20—50oC.適用于中國的大部分地區(qū)的氣溫。
4.3 本章小結
敘述了在減振器的設計中需要的各種設計參數(shù)。介紹了減振器各類參數(shù)的選用方法和在設計過程中需要的各種公式以及對重要參數(shù)的確定。重點敘述了缸體、活塞、活塞桿以及閥系的結構設計和尺寸計算。
第5章 雙筒液壓減振器的結構優(yōu)化
5.1雙筒液壓減振器連接件的優(yōu)化
在本節(jié)中列出了四種減振器連接件的基本型式,選擇一種適合本設計的類型作為本文設計的減振器的連接件,并對其結構做一定的優(yōu)化。
圖5.1 H1 H4(錐吊環(huán))型
圖5.2 H2(直吊環(huán))型
在圖5.1中所描繪的是一種錐型吊環(huán)的減振器吊環(huán),其結構簡單應用廣泛,但是由于技術過于陳舊,現(xiàn)代減振器上采用的已經很少了。
圖5.2中的是直吊環(huán)型的減振器吊環(huán),在實際應用中用的比較廣泛,并且結構相對簡單,我認為直吊環(huán)型的減振器吊環(huán)比較適合本文設計的減振器,所以我選擇了直吊環(huán)型的減振器吊環(huán)作為本文設計的減振器的連接件。
表5.1 連接件尺寸A1
及
型
工作缸直徑
尺 寸 mm
D
h
20
12
19
28.0
18
24
30
19
30
44.5
28
33
40
26
40
57.0
38
50
50
32
50
70.0
46
60
型
20
10
21
28.0
18
24
30
16
35
44.5
28
38
40
22
47
57.0
38
50
50
28
57
70.0
46
60
65
30
64
80.0
50
60
圖5.3 H3(X型銷吊環(huán))型
圖5.4 G(雙頭螺栓)型
圖5.3中的是X型銷吊環(huán),這種減振器吊環(huán)工作可靠,但是結構較復雜,裝卸不是很方便。
圖5.4 中的是雙頭螺栓型連接件,這種減振器連接件也具有工作可靠,使用方便等特點,但是結構較復雜,而且不適合本文設計的減振器。
表5.2 連接件尺寸A2
型
尺 寸 mm
工作缸直徑
D
H
L
a
b
c
t
20
13.8
21
28
18
53
46.6
63
9
6.4
20
4.6
2.3
30
18.0
28
34
24
65
56.5
77
11
6.4
26
6.4
3.2
G
型
d
L
B
C
t
20
M8×1-6h
14
14
27.5
4
40
4
4
6.0
2.3
30
M10×1.25-6h
16
16
34.5
5
50
5
5
7.5
5.2
40
M14×1.5-6h
25
—
58.0
7
75
8
8
11.0
6.0
(45)
50
M18×1.5-6h
30
—
68.0
8
91
—
10
15.0
9.0
注:1、H型吊環(huán)形狀可以在性能與壽命允許的范圍內改變。
2、G型的L為用標準緊固扭矩(M8×1為10N·m,M10×1.25為15N·m,M14×1.5為50N·m,M18×1.5為165-200N·m)擰緊螺母后的尺寸。
3、螺紋精度按CB2516-1981《普通螺紋 偏差表》的規(guī)定。
根據(jù)查表5.1和表5.2得出下列數(shù)據(jù):因為工作缸直徑為30mm,所以直吊環(huán)的D取16mm,取35mm,取44.5mm,h取28mm,取38mm。
直吊環(huán)在根據(jù)表中數(shù)據(jù)裝在減振器上后發(fā)現(xiàn),實際尺寸較大,所以重量也較大,對減振器的工作有負面影響。通過減小沒有標準值的D和之間的厚度,來減小質量,從而使設計在重量和成本上得到一定的優(yōu)化。
5.2 雙筒液壓振器焊接方法的優(yōu)化
針對汽車減震器連桿凸焊質量不穩(wěn)定的工程實際問題,將優(yōu)化理論應用于凸焊工藝規(guī)范參數(shù)的確定,建立回歸方程和多變量函數(shù)的優(yōu)化數(shù)學模型,用內點罰函數(shù)