對(duì)煤礦礦井提升機(jī)鋼絲繩損毀的鋼絲檢測(cè)裝置的研究外文文獻(xiàn)翻譯、中英文翻譯
對(duì)煤礦礦井提升機(jī)鋼絲繩損毀的鋼絲檢測(cè)裝置的研究外文文獻(xiàn)翻譯、中英文翻譯,對(duì)于,煤礦,礦井,提升,晉升,鋼絲繩,損毀,鋼絲,檢測(cè),裝置,研究,鉆研,外文,文獻(xiàn),翻譯,中英文
外文資料:
Research on Detection Device for Broken Wires of Coal Mine-Hoist Cable
WANG Hong-yao1, HUA Gang1, TIAN Jie2
1School of Information and Electrical Engineering, China University of Mining & Technology, Xuzhou, Jiangsu 221008, China
2School of Mechanical Electronic and Information Engineering, China University of Mining & Technology, Beijing 100083, China
Abstract: In order to overcome the flaws of present domestic devices for detecting faulty wires such as low precision,low sensitivity and instability, a new instrument for detecting and processing the signal of flux leakage caused by broken wires of coal mine-hoist cables is investigated. The principle of strong magnetic detection was adopted in the equipment. Wires were magnetized by a pre-magnetic head to reach magnetization saturation. Our special feature is that the number of flux-gates installed along the circle direction on the wall of sensors is twice as large as the number of strands in the wire cable. Neighboring components are connected in series and the interference on the surface of the wire cable, produced by leakage from the flux field of the wire strands, is efficiently filtered. The sampled signal sequence produced by broken wires, which is characterized by a three-dimensional distribution of the flux-leakage field on the surface of the wire cable, can be dimensionally condensed and characteristically extracted. A model of a BP neural network is built and the algorithm of the BP neural network is then used to identify the number of broken wires quantitatively. In our research, we used a 6×37+FC, 24 mm wire cable as our test object. Randomly several wires were artificially broken and damaged to different degrees. The experiments were carried out 100 times to obtain data for 100 groups from our samples. The data were then entered into the BP neural network and trained. The network was then used to identify a total 16 wires, broken at five different locations. The test data proves that our new device can enhance the precision in detecting broken and damaged wires.
Key words: wire cable; broken wire; signal processing; detection device
CLC number: TB 42
1 Introduction
It is well-known that coal mine-hoist cables are an important part in coal mine-hoists or transportation systems. Wires are, in fact, subjected to breakage due to wear, corrosion and fatigue. The extent of damage and the carrying capacity of wires are directly related to the safety of equipment and staff. At present, there are many detection devices for broken steel cables manufactured in China, but most devices do not meet the conditions ideally required in practice. The reasons are largely the complex structure of wires, bad working conditions, the multiplicity and uncertainty of broken wires. It is therefore quite difficult to detect signs of broken wires as well as to analyze and process detected signal of broken wires in cables [1].A new instrument for broken wires detection and procession of coal mine-hoist cables was investigatedfor this paper. With the special structure of a detection transducer, the interfering signal from the leakage field of wire twists can be filtered efficiently. After the extraction of dimensional contraction and characteristic values of multi-ways signals, a quantitative BP neural network recognition for broken wires in steel cables was realized. The test results are presented.
2 Basic Structural Principle of the On-Line Detection Instrument for Coal Mine-Hoist Cable
The structural principle of the on-line detection device for wire cables studied by us is shown in Fig. 1.The detection transducer is composed of two semicircle cylindrical structures which can be opened or closed. The magnetic sensing unit is a fluxgate unit made of a single magnetic core and is single-winding. Some magnetic sensing units are evenly arranged around the inner wall of the transducer, the number of which is twice as many as the number of the wire strands in the inspected cable. As well, two neighboring units are connected in series to a detection channel.Consequently, the number of detection channels of the detection instrument is equal to the number of wire strands in the cable.
Fig. 1 Structural principle of detection instrument
for broken wires in coal mine-hoist cables.
After being filtered and reshaped, the detection signal from each channel is sent to the signal processing unit. The analog detection signal is converted into adiscrete dimensional sequence of sampling values by multi-channel A/D conversion, followed by a characteristic extraction, a BP neural network recognition and the output of the result. When viewed separately, the leakage field signal detected by each single fluxgate unit is the leakage field intensity in the steel cable where the corresponding fluxgate units are located. That is, the outputsignal Zjk of any jth test unit is:
where FC is the structural parameter of the fluxgate, the width of the drive square-wave, s the saturated magneto-conductivity rate, B c, j the magnetic
induction intensity of the leakage field produced by broken wires, Br, j the magnetic induction intensity of the leakage field produced by wire cable twists, Zf j the signal value of broken wires and Z r, j the value of the interference signal produced by wire cable twists.
After , F C ,a , us , Fare assured, F is a constant.After the wire cables are deeply magnetized, the numerical value of sis very small. As a result, the value of c, j is larger and there is no need to magnify and process the detection signal again. When the sensor is operating along wire cables at a specified speed, the signals detected by each of the magnetic fluxgate units can effectively show the three-dimensional distribution status of magnetic flux leakage, generated at the surface of wire cables[2–4].
3 Filtration of the Wavelike Oscillation Interference Signal Produced by Cable Wire Twists
The signal of broken wires from wire cables obtained by a single fluxgate detection unit of the transducer (formula (1)) contains all kinds of interfering signals. The effect of the wavelike oscillation magnetic flux leakage B r, j due to the special structure of the steel cables is largest, which directly affects the detection of broken or damaged wires, especially in coal mine-hoist cables. We should consider the possibility of filtering the interference signals. In formula (1), the interference signal r, j caused by a wavelike oscillation shows up as periodic variation. This kind of wavelike oscillation interferencesignal can be regarded approximately as a sine wave,as shown in Fig. 2.
Fig. 2 Wavelike oscillation interference signal
produced by the cable twist
Over the length direction of wire cables, its variation period T is a Lay length of cable wire strands. At the circle direction of the wire cable, its variation period is the reciprocal of the number of outer wire strands of the circle length of the wire cable. Therefore, the wavelike oscillation interference signal of the jth detection channel can be expresse d as:
j
where a is the Direct Current Component of the wavelike oscillation signal, m the Alternating Current Component magnitude of the wavelike oscillartion signal, T represents the value of periods, y is the position of the detection unit, starting from the initial spot, j the initial phase of the wavelike oscillation signal, N the number of wire strands of the steel cable, and is the number of detection units. cObviously when c , i.e., when the number of detection units doubles the number of outer strands of the wire cable, the wavelike oscillation signal contained in the leakage magnetic field signal inspected by any two neighboring detection units is in a reversal phase. Therefore, when the neighboring detection units along the inner wall of the cylinder of the transducer structure are connected forward into a test channel in series two by two, it is equivalent to adding the (j+1)th test channel signal to the jth test channel signal. Thus the strand peak value of the wavelike oscillation signal compensates for the strand value for the moment. That is, at this moment, the only remaining wavelike oscillation signal is the Direct Current Componen
At this moment, the magnetic field signal of leakage from any of the inspection channels made up of the fluxgate array should be:
of this formula can be eliminated when the zero detection position is adjusted. Therefore, we considered that the wavelike oscillation interference signal of cable wires is filtered by formula (4). After this pretreatment, each leakage from broken wires, shown by magnetic field signals from the transducer, becomes a channel sample value by A/D conversion, as shown in Fig. 3.
Fig. 3 Multi-channel sampling value of broken wire
signals from wire cables
4 Extraction of Characteristic Value of Signals from Broken Wires
As is shown in Fig. 3, the N-channel inspection signals from the transducer becomes its sampling sequence by A/D conversion. If the number of samples of the signals of broken wires is K, the sequence of broken wire sample signals of the jth channel can be expressed as a row vector with K elements.
The N-channel signal sequence will make up a N-dimensional series vector group of broken wiresignals:
At this moment, Z is a characteristic matrix of broken wires and it contains all the information on the status of the broken wires. NK Given the analysis of repeated experiments, the width of the diffused leakage from the magnetic fieldon the surface of wire cables created by broken wires is not larger than 20 mm. When the speed of the inspected wire cable is 3 m/s and the sampling interval is 1.2 mm, the number of samples K is 16 at most. When the number of inspection channels is N=4, Z should be a 4×16 matrix. If the analysis of the characteristic matrix of broken or damaged wires Z were directly carried out, the analytical process would be very complex and would need to be carried out as acomparison and judgment of the sequential value of each line. So instead, we carried out a reduction in the order processing of formula (6), i.e., we carried out a dimensional contraction. According to a lemma of theoretical linear algebra Z can also be expressed as:
where are arbitrary, independent base vectors. h is the characteristic vector of one-dimensional broken wires expected to be obtained after dimensionalcontraction. So long as the appropriate t is found, h can be derived:
According to the L-K transformation principle, when the value of t is the latent vector of the covariance matrix z P of Z, the transformation error is a minimum, i.e., t satisfies the characteristic equation
where j is the characteristic value of z and I is an identity matrix. Represented by formula (8), the expected characteristic vector h of the broken wires could be obtained via the dimensional contraction. The process of transformation of the dimensional contraction is, in fact, a conversion from a N-dimensional characteristic vector to a one-dimensional vector. P The average of the one-dimensional h sequence is regarded as an eigenvector which represents each state of the N-channel broken wire signals:
5 Conclusions
Our detection of broken wires in steel cables is a quantitative inspection method. It will identify not only whether there are broken wires or not, but also will identify the position and number of broken wires. By combining transducer detection technology and computer technology and using advanced signal processing technology, we can effectively enhance the
precision and sensitivity of detection devices to realize the automation and the intellectualization of the detection equipment.
中文翻譯:
對(duì)煤礦礦井提升機(jī)鋼絲繩損毀的鋼絲檢測(cè)裝置的研究
王宏姚,華崗, 田杰
1信息和電氣工程系,中國(guó)礦業(yè)科技大學(xué),江蘇徐州221008 ,中國(guó)
2機(jī)械電子信息工程系,中國(guó)礦業(yè)科技大學(xué),北京100083 ,中國(guó)
摘要:
為了克服目前國(guó)內(nèi)鋼絲故障檢測(cè)設(shè)備的缺陷,如低精度,低靈敏度和不穩(wěn)定,一個(gè)新的由煤礦-提升機(jī)鋼絲繩所造成的漏磁信號(hào)的檢測(cè)和處理裝置已經(jīng)研制出。強(qiáng)磁場(chǎng)檢測(cè)的原理應(yīng)用在該設(shè)備中,鋼絲由前磁頭磁化強(qiáng)度達(dá)到飽和。我們特別的特點(diǎn)是安裝在沿圓圈方向上傳感器的內(nèi)壁數(shù)目通量是在鋼絲繩中兩倍大的數(shù)目。周邊組件系列地連接在一起并且由于鋼絲的通量域所產(chǎn)生的滲漏對(duì)鋼絲繩的表面干擾有效地被過(guò)濾,,斷絲所產(chǎn)生的采樣信號(hào)序列,其特點(diǎn)是在線纜的表面上由一個(gè)三維分布漏磁場(chǎng)通量,可以立體簡(jiǎn)明和根據(jù)特性提取。BP神經(jīng)網(wǎng)絡(luò)的模型已經(jīng)被建立和BP神經(jīng)網(wǎng)絡(luò)的算法是用來(lái)定量分析地確定有多少鋼絲損毀。在我們的研究,我們用了6 × 37 +FC, 24毫米線纜作為我們的測(cè)試對(duì)象。隨機(jī)人為地以不同程度破壞和損壞數(shù)根鋼絲,實(shí)驗(yàn)共進(jìn)行了100次,以為來(lái)自我們的樣本的100組對(duì)象獲取數(shù)據(jù), 然后將數(shù)據(jù)輸進(jìn)BP神經(jīng)網(wǎng)絡(luò)進(jìn)行處理。然后該網(wǎng)絡(luò)用來(lái)識(shí)別共計(jì)16鋼絲,打破了5個(gè)不同地點(diǎn)。測(cè)試數(shù)據(jù)證明我們的新裝置可以提高檢測(cè)破碎和損壞的鋼絲的檢測(cè)精度。
關(guān)鍵詞:鋼絲繩;損壞的鋼絲;信號(hào)處理;檢測(cè)裝置
中圖分類號(hào)TB 42
1 引言
煤礦提升機(jī)鋼絲繩是煤礦提升或運(yùn)輸系統(tǒng)的重要組成部分,這是人所共知的。事實(shí)上鋼絲是,由于磨損,腐蝕和疲勞而受到破損,。鋼絲的損害程度和承載能力直接關(guān)系到設(shè)備和員工的安全。目前, 很多在中國(guó)制造的檢測(cè)損壞的鋼絲繩裝置,但大多數(shù)設(shè)備不能理想地滿足實(shí)踐需要,原因主要是鋼絲的復(fù)雜結(jié)構(gòu),惡劣的工作條件,鋼絲損毀的多重性和不確定性。因此,檢測(cè)到鋼絲損毀的跡象是相當(dāng)困難,以及作以分析和處理在鋼絲繩[ 1 ]里檢測(cè)到的鋼絲損毀的信號(hào)也是如此 。在此論文中,一套新的煤礦-提升機(jī)鋼絲繩和斷絲檢測(cè)設(shè)備
已經(jīng)深入探討,用傳感器檢測(cè)的特殊結(jié)構(gòu),從鋼絲扭曲而產(chǎn)生的泄漏領(lǐng)域的干擾信號(hào),可以有效地過(guò)濾。在…之后提取多途徑的信號(hào)的三維收縮和特征值, BP神經(jīng)網(wǎng)絡(luò)在鋼絲繩對(duì)斷絲的識(shí)別得已定量地實(shí)現(xiàn),該測(cè)試結(jié)果將會(huì)顯示出來(lái)。
2 聯(lián)機(jī)的煤礦提升機(jī)鋼絲繩檢測(cè)儀的基本結(jié)構(gòu)原理
我們研究的該聯(lián)機(jī)的鋼絲繩檢測(cè)裝置的結(jié)構(gòu)原理在圖 1中已經(jīng)表明 。 檢測(cè)傳感器由兩個(gè)可開(kāi)啟或封閉的半圓圓筒形結(jié)構(gòu)組成,磁傳感單元是一種由一個(gè)單一的磁芯組成磁通門(mén)單元并且是單一繞組。一些磁性傳感單元均勻地安排靠近轉(zhuǎn)換器的內(nèi)壁,它的數(shù)量是檢測(cè)鋼絲繩鐵絲網(wǎng)的兩倍以及,兩個(gè)相鄰的單元有系列地聯(lián)接在一項(xiàng)檢測(cè)通道。 因此,該檢測(cè)儀的檢測(cè)通道的數(shù)量與絲股在線纜的數(shù)量相等。
如下列圖表1: 煤礦提升機(jī)鋼絲繩鋼絲損毀檢測(cè)儀的結(jié)構(gòu)原理,經(jīng)過(guò)過(guò)濾和重塑,從每個(gè)通道發(fā)出的檢測(cè)信號(hào)送到信號(hào)處理單元。通過(guò)多渠道的A / D轉(zhuǎn)換,模擬檢測(cè)信號(hào)轉(zhuǎn)化為二維離散序列的采樣值,然后通過(guò)BP神經(jīng)網(wǎng)絡(luò)的識(shí)別和結(jié)果的輸出特點(diǎn)提取。檢測(cè)時(shí),另外,通過(guò)每個(gè)單磁通門(mén)單元檢測(cè)到的漏磁場(chǎng)信號(hào)是泄漏在鋼索的地方相應(yīng)的磁通門(mén)單元的電場(chǎng)強(qiáng)度, 那就是,任何jth測(cè)試單元的輸出信號(hào)Zcj是:
在該公式中,CF是驅(qū)動(dòng)器方波的磁通門(mén) 寬度的結(jié)構(gòu)參數(shù), S 是額定定磁導(dǎo)率, Bcj鋼絲損毀漏磁場(chǎng)所產(chǎn)生的應(yīng)強(qiáng)度,Brj是鋼絲繩曲折所產(chǎn)生的漏磁場(chǎng)的磁感應(yīng)強(qiáng)度, Zfj損毀鋼絲的信號(hào)值,和Zrj是的鋼絲繩扭曲所產(chǎn)生干擾信號(hào)值,公式中系數(shù)
在Cf,a,s,D確定以后,是一個(gè)常數(shù)。 線鋼絲繩深感磁化后, US的數(shù)值 是很小的。因此, Zcj的值會(huì)更大,因此,沒(méi)有必要再次去放大和處理的檢測(cè)信號(hào)。 當(dāng)傳感器是在指定的速度下沿鋼絲繩運(yùn)行,每一項(xiàng)磁通門(mén)單位檢測(cè)到的信號(hào),能有效地顯示磁泄漏三維立體分布狀況,在鋼絲繩表面產(chǎn)生 [ 2-4 ] 。
3 鋼絲繩扭曲所產(chǎn)生的干擾信號(hào)的波形振蕩的過(guò)濾
由一個(gè)單一的磁通門(mén)檢測(cè)單元所獲得的鋼絲繩損毀鋼絲的信號(hào), (公式( 1 ))包含各種干擾信號(hào)。由于鋼絲繩特殊結(jié)構(gòu)產(chǎn)生的磁通量泄露強(qiáng)度Bjb的波形振蕩影響是最大地,這直接影響到檢測(cè)的破碎或損壞的鋼絲,特別是在煤礦-提升機(jī)的鋼絲繩。我們應(yīng)該考慮過(guò)濾干擾信號(hào)可能性。
在公式( 1 ) ,波形振蕩所造成的干擾信號(hào)Zrj周期地顯示。這種波形振蕩干擾信號(hào),可算是大約作為一個(gè)正弦波,如圖圖2所示:
圖2鋼絲繩扭曲波形振蕩所產(chǎn)生的干擾信號(hào)
通過(guò)鋼絲繩的長(zhǎng)度方向,其震蕩周期T是一個(gè)奠定長(zhǎng)度電纜絲。在鋼絲繩的循環(huán)方向,其震蕩周期是鋼絲繩圓周長(zhǎng)度的外鋼絲數(shù)目的倒數(shù), 因此,jth檢測(cè)通道的波形振蕩干擾信號(hào)Zrj可
表示為:
這里Ra是振蕩直流電信號(hào)組成部分,Rm是波形震蕩信號(hào)的交流電組成量,T代表周期值, Y是檢測(cè)單元的位置,從最初的位置開(kāi)始,初期階段波形振蕩信號(hào), n的數(shù)目絲股的鋼索,以及數(shù)是檢測(cè)單位。N是鋼絲繩中的鋼絲根數(shù)Nc是檢測(cè)單元的個(gè)數(shù). 顯然,當(dāng)Nc= 2 n ,即,當(dāng)檢測(cè)單元的數(shù)目是鋼絲繩外部鋼絲數(shù)目的雙倍,由任何兩個(gè)鄰的檢測(cè)單位產(chǎn)生的漏磁場(chǎng)信號(hào)的波形振蕩信號(hào)是在一個(gè)還原階段。因此,當(dāng)周邊的檢測(cè)單位,沿傳感器的結(jié)構(gòu)圓柱內(nèi)壁兩個(gè)兩個(gè)地系列連接著成為一個(gè)測(cè)試頻道,這是相當(dāng)于向jth測(cè)試通道信號(hào)添加了j+1次測(cè)試通道信號(hào)。因此,鋼絞線波形振蕩信號(hào)的峰值補(bǔ)償為鋼絞線的價(jià)值是當(dāng)務(wù)之急。這是,在這一刻,剩下的唯一波形振蕩信號(hào)是直流電量的組成部分
此時(shí),從任何檢查的渠道泄漏的磁場(chǎng)信號(hào),組成了該磁通門(mén)陣列應(yīng)該是:
當(dāng)零檢測(cè)位置被調(diào)整時(shí),這個(gè)公式的Zr可以被減掉,因此,我們可以認(rèn)為鋼絲繩的波形振蕩干擾信號(hào)是被式( 4)過(guò)濾了。這預(yù)處理后,損毀鋼絲的每個(gè)泄漏,由傳感器所表現(xiàn)出的磁場(chǎng)信號(hào),由A / D轉(zhuǎn)換,變成一個(gè)渠道采樣值,顯示在圖3
圖3來(lái)自鋼絲繩的斷鋼絲信號(hào)的多渠道的采樣值
4 從損毀的鋼絲信號(hào)的特征值提取
正像圖3所表示的那樣,,來(lái)自傳感器N通道檢查信號(hào)通過(guò)A / D轉(zhuǎn)換成為其采樣序列,如果損壞的鋼絲信號(hào)的采樣數(shù)值是K, jth渠道的損壞鋼絲樣本信號(hào)序列,可以表示為一個(gè)與K有關(guān)的行向量.
N通道信號(hào)序列將組成損壞鋼絲的信號(hào)的
一個(gè)n維向量組
:
此時(shí), Z是一個(gè)具有損毀鋼絲的矩陣的特點(diǎn),它包含所有損毀鋼絲的程度的信息。鑒于反復(fù)試驗(yàn)分析, 鋼絲繩表面上損壞的鋼絲所造成的擴(kuò)散泄漏磁場(chǎng)的寬度斷絲不大于20毫米。當(dāng)檢測(cè)到鋼絲繩的速度是3米/秒和采樣間隔是1.2毫米,樣本數(shù)目K至多是16。 當(dāng)檢查渠道數(shù)目是N = 4時(shí), Z 應(yīng)該是一個(gè)4 × 16矩陣。如果破碎或損壞的鋼絲z的特征矩陣分析直接進(jìn)行,分析過(guò)程將十分復(fù)雜,將需要對(duì)該序列每一行的值進(jìn)行作為比較和判斷。因此,相反,我們減少了一項(xiàng),在指令處理公式( 6 ) ,即,我們進(jìn)行了維收縮。根據(jù)一項(xiàng)引理理論線性代數(shù),z也可以表示為:
其中, , ,… ,是任意的,獨(dú)立的基體。 h是該損毀鋼絲的一維特征向量,預(yù)計(jì)在三維收縮后將取得。因此,只要找到適當(dāng)?shù)膖, h可以得出:
根據(jù)該L-K轉(zhuǎn)換的原則, 當(dāng)t值為是協(xié)方差矩陣的Z的潛在的基體,是轉(zhuǎn)型錯(cuò)誤最低一個(gè)情況,即:t滿足特征方程:
其中,是的特征值,I是一單位矩陣。由公式( 8)所代替,損壞鋼絲的 期望的特征向量h可以通過(guò)三維收縮得到。 這個(gè)三維收縮的轉(zhuǎn)變過(guò)程,實(shí)際上就是一個(gè)從一個(gè)N維特征向量向一個(gè)維向量的轉(zhuǎn)換。平均一維空間h序列被視為一個(gè)特征向量代表N通道斷絲信號(hào)的每個(gè)狀態(tài):
5 結(jié)論
我們對(duì)鋼絲繩中損毀的鋼絲的檢測(cè)是一個(gè)定量檢測(cè)方法。它將不只是確定否有鋼絲損毀,也將確定損毀鋼絲的位置和數(shù)目。 結(jié)合傳感器檢測(cè)技術(shù)及計(jì)算機(jī)技術(shù)和使用先進(jìn)的信號(hào)處理技術(shù),我們可以有效地提高檢測(cè)裝置的精度和靈敏度,從而實(shí)現(xiàn)檢測(cè)設(shè)備的自動(dòng)化和智能化。
16
收藏