《(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題一 三角函數(shù)、解三角形與平面向量 第1講 三角函數(shù)的圖象與性質(zhì)課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題一 三角函數(shù)、解三角形與平面向量 第1講 三角函數(shù)的圖象與性質(zhì)課件.ppt(51頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第1講三角函數(shù)的圖象與性質(zhì),專題一三角函數(shù)、解三角形與平面向量,板塊三專題突破核心考點(diǎn),考情考向分析,1.以圖象為載體,考查三角函數(shù)的最值、單調(diào)性、對(duì)稱性、周期性.2.考查三角函數(shù)式的化簡(jiǎn)、三角函數(shù)的圖象和性質(zhì)、角的求值,重點(diǎn)考查分析、處理問(wèn)題的能力,是高考的必考點(diǎn).,熱點(diǎn)分類突破,真題押題精練,內(nèi)容索引,熱點(diǎn)分類突破,1.三角函數(shù):設(shè)是一個(gè)任意角,它的終邊與單位圓交于點(diǎn)P(x,y),則siny,cosx,tan(x0).各象限角的三角函數(shù)值的符號(hào):一全正,二正弦,三正切,四余弦.2.同角基本關(guān)系式:sin2cos21,3.誘導(dǎo)公式:在,kZ的誘導(dǎo)公式中“奇變偶不變,符號(hào)看象限”.,熱點(diǎn)一三角
2、函數(shù)的概念、誘導(dǎo)公式及同角關(guān)系式,例1(1)已知角的頂點(diǎn)與原點(diǎn)O重合,始邊與x軸的非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn)P(2,1),則等于A.7B.C.D.7,解析,答案,解析由角的頂點(diǎn)與原點(diǎn)O重合,始邊與x軸的非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn)P(2,1),,解析,答案,解析由f(x)x32x2x可知f(x)3x24x1,tanf(1)2,,(sin)22cos23sincossin22cos23sincos,(1)涉及與圓及角有關(guān)的函數(shù)建模問(wèn)題(如鐘表、摩天輪、水車(chē)等),常常借助三角函數(shù)的定義求解.應(yīng)用定義時(shí),注意三角函數(shù)值僅與終邊位置有關(guān),與終邊上點(diǎn)的位置無(wú)關(guān).(2)應(yīng)用誘導(dǎo)公式時(shí)要弄清三角函數(shù)在各個(gè)象限內(nèi)的
3、符號(hào);利用同角三角函數(shù)的關(guān)系化簡(jiǎn)過(guò)程要遵循一定的原則,如切化弦、化異為同、化高為低、化繁為簡(jiǎn)等.,答案,解析,解析由誘導(dǎo)公式可得,,由三角函數(shù)的定義可得,,解析,答案,sin2cos,即sin2cos,,函數(shù)yAsin(x)的圖象(1)“五點(diǎn)法”作圖:,熱點(diǎn)二三角函數(shù)的圖象及應(yīng)用,(2)圖象變換:,解析,答案,解析由題意知,函數(shù)f(x)的最小正周期T,所以2,,即可得到g(x)cos2x的圖象,故選A.,解析,答案,所以2,即f(x)2sin(2x),,(1)已知函數(shù)yAsin(x)(A0,0)的圖象求解析式時(shí),常采用待定系數(shù)法,由圖中的最高點(diǎn)、最低點(diǎn)或特殊點(diǎn)求A;由函數(shù)的周期確定;確定常根據(jù)
4、“五點(diǎn)法”中的五個(gè)點(diǎn)求解,其中一般把第一個(gè)零點(diǎn)作為突破口,可以從圖象的升降找準(zhǔn)第一個(gè)零點(diǎn)的位置.(2)在圖象變換過(guò)程中務(wù)必分清是先相位變換,還是先周期變換.變換只是相對(duì)于其中的自變量x而言的,如果x的系數(shù)不是1,就要把這個(gè)系數(shù)提取后再確定變換的單位長(zhǎng)度數(shù)和方向.,答案,解析,平移后得到的函數(shù)圖象與函數(shù)ysinx的圖象重合,,解析,答案,2,1.三角函數(shù)的單調(diào)區(qū)間,熱點(diǎn)三三角函數(shù)的性質(zhì),ycosx的單調(diào)遞增區(qū)間是2k,2k(kZ),單調(diào)遞減區(qū)間是2k,2k(kZ);,2.yAsin(x),當(dāng)k(kZ)時(shí)為奇函數(shù);,當(dāng)k(kZ)時(shí)為偶函數(shù);對(duì)稱軸方程可由xk(kZ)求得.yAtan(x),當(dāng)k(k
5、Z)時(shí)為奇函數(shù).,解答,解答,(2)求f(x)的最小正周期及單調(diào)遞增區(qū)間.,解由cos2xcos2xsin2x與sin2x2sinxcosx得,,所以f(x)的最小正周期是.由正弦函數(shù)的性質(zhì)得,,函數(shù)yAsin(x)的性質(zhì)及應(yīng)用類題目的求解思路第一步:先借助三角恒等變換及相應(yīng)三角函數(shù)公式把待求函數(shù)化成yAsin(x)B的形式;第二步:把“x”視為一個(gè)整體,借助復(fù)合函數(shù)性質(zhì)求yAsin(x)B的單調(diào)性及奇偶性、最值、對(duì)稱性等問(wèn)題.,解答,跟蹤演練3(2018寧波模擬)已知函數(shù)f(x)2sinxcosx12sin2x.(1)求f(x)的最小正周期;,所以f(x)的最小正周期為.,解答,真題押題精練
6、,1.(2018全國(guó))已知函數(shù)f(x)2sinxsin2x,則f(x)的最小值是_.,真題體驗(yàn),答案,解析,解析f(x)2cosx2cos2x2cosx2(2cos2x1)2(2cos2xcosx1)2(2cosx1)(cosx1).cosx10,,又f(x)2sinxsin2x2sinx(1cosx),,2.(2018全國(guó)改編)若f(x)cosxsinx在a,a上是減函數(shù),則a的最大值是_.,答案,解析,解析f(x)cosxsinx,函數(shù)f(x)在a,a上是減函數(shù),,答案,解析,3,答案,解析,x0,,押題預(yù)測(cè),答案,解析,押題依據(jù),押題依據(jù)本題結(jié)合函數(shù)圖象的性質(zhì)確定函數(shù)解析式,然后考查圖象
7、的平移,很有代表性,考生應(yīng)熟練掌握?qǐng)D象平移規(guī)則,防止出錯(cuò).,解析由于函數(shù)f(x)圖象的相鄰兩條對(duì)稱軸之間的距離為則其最小正周期T,,答案,解析,押題依據(jù),押題依據(jù)由三角函數(shù)的圖象求解析式是高考的熱點(diǎn),本題結(jié)合平面幾何知識(shí)求A,考查數(shù)形結(jié)合思想.,解析由題意設(shè)Q(a,0),R(0,a)(a0).,解得a18,a24(舍去),,押題依據(jù)三角函數(shù)解答題的常見(jiàn)形式是求周期、求單調(diào)區(qū)間及求對(duì)稱軸方程(或?qū)ΨQ中心)等,這些都可以由三角函數(shù)解析式直接得到,因此此類命題的基本方式是利用三角恒等變換得到函數(shù)的解析式.,解答,押題依據(jù),解f(x)cos4x2sinxcosxsin4x(cos2xsin2x)(cos2xsin2x)sin2xcos2xsin2x,由題意可得x(0,),,押題依據(jù)本問(wèn)的常見(jiàn)形式是求解函數(shù)的值域(或最值),特別是指定區(qū)間上的值域(或最值),是高考考查三角函數(shù)圖象與性質(zhì)命題的基本模式.,解答,押題依據(jù),