《2019屆高考數(shù)學(xué)二輪復(fù)習(xí) 第三部分 回顧教材 以點(diǎn)帶面 2 回顧2 函數(shù)與導(dǎo)數(shù)學(xué)案》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019屆高考數(shù)學(xué)二輪復(fù)習(xí) 第三部分 回顧教材 以點(diǎn)帶面 2 回顧2 函數(shù)與導(dǎo)數(shù)學(xué)案(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、回顧2 函數(shù)與導(dǎo)數(shù)
[必記知識(shí)]
函數(shù)的定義域和值域
(1)求函數(shù)定義域的類型和相應(yīng)方法
①若已知函數(shù)的解析式,則函數(shù)的定義域是使解析式有意義的自變量的取值范圍.
②若已知f(x)的定義域?yàn)閇a,b],則f(g(x))的定義域?yàn)椴坏仁絘≤g(x)≤b的解集;反之,已知f(g(x))的定義域?yàn)閇a,b],則f(x)的定義域?yàn)楹瘮?shù)y=g(x)(x∈[a,b])的值域.
(2)常見(jiàn)函數(shù)的值域
①一次函數(shù)y=kx+b(k≠0)的值域?yàn)镽.
②二次函數(shù)y=ax2+bx+c(a≠0):當(dāng)a>0時(shí),值域?yàn)椋?dāng)a<0時(shí),值域?yàn)椋?
③反比例函數(shù)y=(k≠0)的值域?yàn)閧y∈R|y≠0}.
2、[提醒]?。?)解決函數(shù)問(wèn)題時(shí)要注意函數(shù)的定義域,要樹(shù)立定義域優(yōu)先原則.,(2)解決分段函數(shù)問(wèn)題時(shí),要注意與解析式對(duì)應(yīng)的自變量的取值范圍.
函數(shù)的奇偶性、周期性
(1)奇偶性是函數(shù)在其定義域上的整體性質(zhì),對(duì)于定義域內(nèi)的任意x(定義域關(guān)于原點(diǎn)對(duì)稱),都有f(-x)=-f(x)成立,則f(x)為奇函數(shù)(都有f(-x)=f(x)成立,則f(x)為偶函數(shù)).
(2)周期性是函數(shù)在其定義域上的整體性質(zhì),一般地,對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)的任意一個(gè)x的值,若f(x+T)=f(x)(T≠0),則f(x)是周期函數(shù),T是它的一個(gè)周期.
[提醒] 判斷函數(shù)的奇偶性,要注意定義域必須關(guān)于原點(diǎn)對(duì)稱
3、,有時(shí)還要對(duì)函數(shù)式化簡(jiǎn)整理,但必須注意使定義域不受影響.
函數(shù)的單調(diào)性
函數(shù)的單調(diào)性是函數(shù)在其定義域上的局部性質(zhì).
①單調(diào)性的定義的等價(jià)形式:設(shè)x1,x2∈[a,b],
那么(x1-x2)[f(x1)-f(x2)]>0?>0?f(x)在[a,b]上是增函數(shù);
(x1-x2)[f(x1)-f(x2)]<0?<0?f(x)在[a,b]上是減函數(shù).
②若函數(shù)f(x)和g(x)都是減函數(shù),則在公共定義域內(nèi),f(x)+g(x)是減函數(shù);若函數(shù)f(x)和g(x)都是增函數(shù),則在公共定義域內(nèi),f(x)+g(x)是增函數(shù);根據(jù)同增異減判斷復(fù)合函數(shù)y=f(g(x))的單調(diào)性.
[提醒]) 求函數(shù)
4、單調(diào)區(qū)間時(shí),多個(gè)單調(diào)區(qū)間之間不能用符號(hào)“∪”和“或”連接,可用“與”連接或用“,”隔開(kāi).單調(diào)區(qū)間必須是“區(qū)間”,而不能用集合或不等式代替.
指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的基本性質(zhì)
(1)定點(diǎn):y=ax(a>0,且a≠1)恒過(guò)(0,1)點(diǎn);
y=logax(a>0,且a≠1)恒過(guò)(1,0)點(diǎn).
(2)單調(diào)性:當(dāng)a>1時(shí),y=ax在R上單調(diào)遞增;y=logax在(0,+∞)上單調(diào)遞增;
當(dāng)0<a<1時(shí),y=ax在R上單調(diào)遞減;y=logax在(0,+∞)上單調(diào)遞減.
導(dǎo)數(shù)的幾何意義
(1)f′(x0)的幾何意義:曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線的斜率,該切線的方程為y-f(
5、x0)=f′(x0)(x-x0).
(2)切點(diǎn)的兩大特征:①在曲線y=f(x)上;②在切線上.
利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
(1)求可導(dǎo)函數(shù)單調(diào)區(qū)間的一般步驟
①求函數(shù)f(x)的定義域;
②求導(dǎo)函數(shù)f′(x);
③由f′(x)>0的解集確定函數(shù)f(x)的單調(diào)增區(qū)間,由f′(x)<0的解集確定函數(shù)f(x)的單調(diào)減區(qū)間.
(2)由函數(shù)的單調(diào)性求參數(shù)的取值范圍
①若可導(dǎo)函數(shù)f(x)在區(qū)間M上單調(diào)遞增,則f′(x)≥0(x∈M)恒成立;若可導(dǎo)函數(shù)f(x)在區(qū)間M上單調(diào)遞減,則f′(x)≤0(x∈M)恒成立(注意:等號(hào)不恒成立);
②若可導(dǎo)函數(shù)在某區(qū)間上存在單調(diào)遞增(減)區(qū)間,f′(x
6、)>0(或f′(x)<0)在該區(qū)間上存在解集;
③若已知f(x)在區(qū)間I上的單調(diào)性,區(qū)間I中含有參數(shù)時(shí),可先求出f(x)的單調(diào)區(qū)間,則I是其單調(diào)區(qū)間的子集.
[提醒]) 已知可導(dǎo)函數(shù)f(x)在(a,b)上單調(diào)遞增(減),則f′(x)≥0(≤0)對(duì)?x∈(a,b)恒成立,不能漏掉“=”,且需驗(yàn)證“=”不能恒成立;已知可導(dǎo)函數(shù)f(x)的單調(diào)遞增(減)區(qū)間為(a,b),則f′(x)>0(<0)的解集為(a,b).
利用導(dǎo)數(shù)研究函數(shù)的極值與最值
(1)求函數(shù)的極值的一般步驟
①確定函數(shù)的定義域;
②解方程f′(x)=0;
③判斷f′(x)在方程f′(x)=0的根x0兩側(cè)的符號(hào)變化:
7、若左正右負(fù),則x0為極大值點(diǎn);
若左負(fù)右正,則x0為極小值點(diǎn);
若不變號(hào),則x0不是極值點(diǎn).
(2)求函數(shù)f(x)在區(qū)間[a,b]上的最值的一般步驟
①求函數(shù)y=f(x)在[a,b]內(nèi)的極值;
②比較函數(shù)y=f(x)的各極值與端點(diǎn)處的函數(shù)值f(a),f(b)的大小,最大的一個(gè)是最大值,最小的一個(gè)是最小值.
[提醒]) f′(x)=0的解不一定是函數(shù)f(x)的極值點(diǎn).一定要檢驗(yàn)在x=x0的兩側(cè)f′(x)的符號(hào)是否發(fā)生變化,若變化,則為極值點(diǎn);若不變化,則不是極值點(diǎn).
定積分的三個(gè)公式與一個(gè)定理
(1)定積分的性質(zhì)
①kf(x)dx=kf(x)dx;
②[f1(x)±f2(x
8、)]dx=f1(x)dx±f2(x)dx.
③f(x)dx=f(x)dx+f(x)dx(其中a<c<b).
(2)微積分基本定理
一般地,如果f(x)是區(qū)間[a,b]上的連續(xù)函數(shù),并且F′(x)=f(x),那么f(x)dx=F(b)-F(a).
[提醒])?。?)若f(x)是偶函數(shù),則f(x)dx=2f(x)dx;,(2)若f(x)是奇函數(shù),則f(x)dx=0.
[必會(huì)結(jié)論]
函數(shù)周期性的常見(jiàn)結(jié)論
(1)若f(x+a)=f(x-a)(a≠0),則函數(shù)f(x)的周期為2|a|;若f(x+a)=-f(x)(a≠0),則函數(shù)f(x)的周期為2|a|.
(2)若f(x+a)=-(a
9、≠0,f(x)≠0),則函數(shù)f(x)的周期為2|a|;若f(x+a)=(a≠0,f(x)≠0),則函數(shù)f(x)的周期為2|a|.
(3)若f(x+a)=f(x+b)(a≠b),則函數(shù)f(x)的周期為|a-b|.
(4)若函數(shù)f(x)的圖象關(guān)于直線x=a與x=b(a≠b)對(duì)稱,則函數(shù)f(x)的周期為2|b-a|.
(5)若函數(shù)f(x)是偶函數(shù),其圖象關(guān)于直線x=a(a≠0)對(duì)稱,則函數(shù)f(x)的周期為2|a|.
(6)若函數(shù)f(x)是奇函數(shù),其圖象關(guān)于直線x=a(a≠0)對(duì)稱,則函數(shù)f(x)的周期為4|a|.
函數(shù)圖象的對(duì)稱性
(1)若函數(shù)y=f(x)滿足f(a+x)=f(a-x)
10、,即f(x)=f(2a-x),則f(x)的圖象關(guān)于直線x=a對(duì)稱;
(2)若函數(shù)y=f(x)滿足f(a+x)=-f(a-x),即f(x)=-f(2a-x),則f(x)的圖象關(guān)于點(diǎn)(a,0)對(duì)稱;
(3)若函數(shù)y=f(x)滿足f(a+x)=f(b-x),則函數(shù)f(x)的圖象關(guān)于直線x=對(duì)稱.
三次函數(shù)的相關(guān)結(jié)論
給定三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),求導(dǎo)得f′(x)=3ax2+2bx+c(a≠0),則
(1)當(dāng)4(b2-3ac)>0時(shí),f′(x)=0有兩個(gè)實(shí)數(shù)解,即f(x)有兩個(gè)極值點(diǎn);當(dāng)4(b2-3ac)≤0時(shí),f(x)無(wú)極值點(diǎn).
(2)若函數(shù)f(x)的圖象存
11、在水平切線,則f′(x)=0有實(shí)數(shù)解,從而4(b2-3ac)≥0.
(3)若函數(shù)f(x)在R上單調(diào)遞增,則a>0且4(b2-3ac)≤0.
[必練習(xí)題]
1.函數(shù)f(x)=-的定義域?yàn)? )
A.[1,10] B.[1,2)∪(2,10]
C.(1,10] D.(1,2)∪(2,10]
解析:選D.要使原函數(shù)有意義,則解得1<x≤10且x≠2,所以函數(shù)f(x)=-的定義域?yàn)?1,2)∪(2,10],故選D.
2.已知函數(shù)f(x)=則f的值是( )
A.0 B.1
C. D.-
解析:選C.因?yàn)閒(x)=且0<<1,>1,所以f=f()=log2=,故選C
12、.
3.已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足f(x)+g(x)=ax-a-x+2(a>0,a≠1),若g(2)=a,則f(2)等于( )
A.2 B.
C. D.a(chǎn)2
解析:選B.由題意知f(-x)+g(-x)=a-x-ax+2,
又f(-x)=-f(x),g(-x)=g(x),
所以g(x)-f(x)=a-x-ax+2.?、?
又g(x)+f(x)=ax-a-x+2. ②
①+②得g(x)=2,
②-①得f(x)=ax-a-x,
又g(2)=a,所以a=2,
所以f(x)=2x-2-x,
所以f(2)=4-=,故選B.
4.若a>b>0,0<c<1,則
13、( )
A.logac<logbc B.logca<logcb
C.a(chǎn)c<bc D.ca>cb
解析:選B.由y=xc與y=cx的單調(diào)性知,C、D不正確.因?yàn)閥=logcx是減函數(shù),得logca<logcb,B正確.logac=,logbc=,因?yàn)?<c<1,所以lg c<0.而a>b>0,所以lg a>lg b,但不能確定lg a,lg b的正負(fù),所以logac與logbc的大小不能確定.
5.函數(shù)f(x)=cos x(-π≤x≤π且x≠0)的圖象可能為( )
解析:選D.函數(shù)f(x)=cos x(-π≤x≤π且x≠0)為奇函數(shù),排除選項(xiàng)A,B;當(dāng)x=π時(shí),f(π)=cos
14、 π=-π<0,排除選項(xiàng)C,故選D.
6.已知定義在R上的奇函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),當(dāng)x>0時(shí),f′(x)<,且f(-1)=0,則使得f(x)>0成立的x的取值范圍是( )
A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1)
C.(0,1)∪(1,+∞) D.(-∞,-1)∪(-1,0)
解析:選B.設(shè)F(x)=,因?yàn)閒(x)為奇函數(shù),所以F(x)為偶函數(shù).F′(x)=[xf′(x)-f(x)],x>0時(shí),F(xiàn)′(x)<0,所以F(x)在(0,+∞)上為減函數(shù),在(-∞,0)上為增函數(shù),F(xiàn)(1)=F(-1)=0,結(jié)合F(x)的圖象得f(x)>0的解為(-∞,-1)
15、∪(0,1).
7.已知函數(shù)f(x)=2ax-a+3,若?x0∈(-1,1),使得f(x0)=0,則實(shí)數(shù)a的取值范圍是________.
解析:依題意可得f(-1)·f(1)<0,即(-2a-a+3)(2a-a+3)<0,解得a<-3或a>1.
答案:(-∞,-3)∪(1,+∞)
8.函數(shù)y=ex-x在區(qū)間[-1,1]上的最大值為_(kāi)_______.
解析:f′(x)=ex-1,令f′(x)=0,解得x=0,又f(-1)=+1,f(1)=e-1,f(0)=e0-0=1,而e-1>+1>1,所以函數(shù)f(x)=ex-x在區(qū)間[-1,1]上的最大值為e-1.
答案:e-1
9.設(shè)函數(shù)f(
16、x)=g+x2,曲線y=g(x)在點(diǎn)(1,g(1))處的切線方程為9x+y-1=0,則曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為_(kāi)_______.
解析:由已知得g′(1)=-9,g(1)=-8,又f′(x)=g′+2x,所以f′(2)=g′(1)+4=-+4=-,f(2)=g(1)+4=-4,所以所求切線方程為y+4=-(x-2),即x+2y+6=0.
答案:x+2y+6=0
10.已知定義在R上的函數(shù)y=f(x)滿足條件f=-f(x),且函數(shù)y=f為奇函數(shù),給出以下四個(gè)結(jié)論:
(1)函數(shù)f(x)是周期函數(shù);
(2)函數(shù)f(x)的圖象關(guān)于點(diǎn)對(duì)稱;
(3)函數(shù)f(x)為R上的偶函數(shù);
(4)函數(shù)f(x)為R上的單調(diào)函數(shù).
其中正確結(jié)論的序號(hào)為_(kāi)_______(寫(xiě)出所有正確結(jié)論的序號(hào)).
解析:f(x+3)=f=-f=f(x),所以f(x)是周期為3的周期函數(shù),(1)正確;函數(shù)f是奇函數(shù),其圖象關(guān)于點(diǎn)(0,0)對(duì)稱,則f(x)的圖象關(guān)于點(diǎn)對(duì)稱,(2)正確;因?yàn)閒(x)的圖象關(guān)于點(diǎn)對(duì)稱,-=,所以f(-x)=-f,又f=-f=-f(x),所以f(-x)=f(x),(3)正確;f(x)是周期函數(shù),在R上不可能是單調(diào)函數(shù),(4)錯(cuò)誤.故正確結(jié)論的序號(hào)為(1)(2)(3).
答案:(1)(2)(3)
7