概率論與數(shù)理統(tǒng)計(jì)習(xí)題1及答案.doc
概率論與數(shù)理統(tǒng)計(jì)習(xí)題及答案習(xí)題 一1.寫出下列隨機(jī)試驗(yàn)的樣本空間及下列事件包含的樣本點(diǎn).(1) 擲一顆骰子,出現(xiàn)奇數(shù)點(diǎn).(2) 擲二顆骰子, A=“出現(xiàn)點(diǎn)數(shù)之和為奇數(shù),且恰好其中有一個(gè)1點(diǎn).” B=“出現(xiàn)點(diǎn)數(shù)之和為偶數(shù),但沒有一顆骰子出現(xiàn)1點(diǎn).” (3)將一枚硬幣拋兩次, A=“第一次出現(xiàn)正面.”B=“至少有一次出現(xiàn)正面.”C=“兩次出現(xiàn)同一面.” 【解】2.設(shè)A,B,C為三個(gè)事件,試用A,B,C的運(yùn)算關(guān)系式表示下列事件:(1) A發(fā)生,B,C都不發(fā)生; (2) A與B發(fā)生,C不發(fā)生;(3) A,B,C都發(fā)生; (4) A,B,C至少有一個(gè)發(fā)生;(5) A,B,C都不發(fā)生; (6) A,B,C不都發(fā)生;(7) A,B,C至多有2個(gè)發(fā)生; (8) A,B,C至少有2個(gè)發(fā)生.【解】(1) A (2) AB (3) ABC(4) ABC=CBABCACABABC=(5) = (6) (7) BCACABCAB=(8) ABBCCA=ABACBCABC5.設(shè)A,B為隨機(jī)事件,且P(A)=0.7,P(A-B)=0.3,求P().【解】 P()=1-P(AB)=1-P(A)-P(A-B)=1-0.7-0.3=0.67.設(shè)A,B是兩事件,且P(A)=0.6,P(B)=0.7,求:(1) 在什么條件下P(AB)取到最大值?(2) 在什么條件下P(AB)取到最小值?【解】(1) 當(dāng)AB=A時(shí),P(AB)取到最大值為0.6.(2) 當(dāng)AB=時(shí),P(AB)取到最小值為0.3.9.對(duì)一個(gè)五人學(xué)習(xí)小組考慮生日問題:(1) 求五個(gè)人的生日都在星期日的概率; (2) 求五個(gè)人的生日都不在星期日的概率;(3) 求五個(gè)人的生日不都在星期日的概率.【解】(1) 設(shè)A1=五個(gè)人的生日都在星期日,基本事件總數(shù)為75,有利事件僅1個(gè),故 P(A1)=()5 (亦可用獨(dú)立性求解,下同)(2) 設(shè)A2=五個(gè)人生日都不在星期日,有利事件數(shù)為65,故P(A2)=()5(3) 設(shè)A3=五個(gè)人的生日不都在星期日P(A3)=1-P(A1)=1-()510. 從一批由45件正品,5件次品組成的產(chǎn)品中任取3件,求其中恰有一件次品的概率.【解】與次序無關(guān),是組合問題.從50個(gè)產(chǎn)品中取3個(gè),有種取法.因只有一件次品,所以從45個(gè)正品中取2個(gè),共種取法;從5個(gè)次品中取1個(gè),共種取法,由乘法原理,恰有一件次品的取法為種,所以所求概率為.11.一批產(chǎn)品共N件,其中M件正品.從中隨機(jī)地取出n件(n<N).試求其中恰有m件(mM)正品(記為A)的概率.如果:(1) n件是同時(shí)取出的;(2) n件是無放回逐件取出的;(3) n件是有放回逐件取出的.【解】(1) P(A)=(2) 由于是無放回逐件取出,可用排列法計(jì)算.樣本點(diǎn)總數(shù)有種,n次抽取中有m次為正品的組合數(shù)為種.對(duì)于固定的一種正品與次品的抽取次序,從M件正品中取m件的排列數(shù)有種,從N-M件次品中取n-m件的排列數(shù)為種,故P(A)=由于無放回逐漸抽取也可以看成一次取出,故上述概率也可寫成P(A)=可以看出,用第二種方法簡便得多.(3) 由于是有放回的抽取,每次都有N種取法,故所有可能的取法總數(shù)為Nn種,n次抽取中有m次為正品的組合數(shù)為種,對(duì)于固定的一種正、次品的抽取次序,m次取得正品,都有M種取法,共有Mm種取法,n-m次取得次品,每次都有N-M種取法,共有(N-M)n-m種取法,故此題也可用貝努里概型,共做了n重貝努里試驗(yàn),每次取得正品的概率為,則取得m件正品的概率為12. 50只鉚釘隨機(jī)地取來用在10個(gè)部件上,每個(gè)部件用3只鉚釘.其中有3個(gè)鉚釘強(qiáng)度太弱.若將3只強(qiáng)度太弱的鉚釘都裝在一個(gè)部件上,則這個(gè)部件強(qiáng)度就太弱.求發(fā)生一個(gè)部件強(qiáng)度太弱的概率是多少?【解】設(shè)A=發(fā)生一個(gè)部件強(qiáng)度太弱13.一個(gè)袋內(nèi)裝有大小相同的7個(gè)球,其中4個(gè)是白球,3個(gè)是黑球,從中一次抽取3個(gè),計(jì)算至少有兩個(gè)是白球的概率.【解】 設(shè)Ai=恰有i個(gè)白球(i=2,3),顯然A2與A3互斥.故 14.有甲、乙兩批種子,發(fā)芽率分別為0.8和0.7,在兩批種子中各隨機(jī)取一粒,求:(1) 兩粒都發(fā)芽的概率;(2) 至少有一粒發(fā)芽的概率;(3) 恰有一粒發(fā)芽的概率.【解】設(shè)Ai=第i批種子中的一粒發(fā)芽,(i=1,2)(1) (2) (3) 15.擲一枚均勻硬幣直到出現(xiàn)3次正面才停止.(1) 問正好在第6次停止的概率;(2) 問正好在第6次停止的情況下,第5次也是出現(xiàn)正面的概率.【解】(1) (2) 18.某地某天下雪的概率為0.3,下雨的概率為0.5,既下雪又下雨的概率為0.1,求:(1) 在下雨條件下下雪的概率;(2) 這天下雨或下雪的概率.【解】 設(shè)A=下雨,B=下雪.(1) (2) 19.已知一個(gè)家庭有3個(gè)小孩,且其中一個(gè)為女孩,求至少有一個(gè)男孩的概率(小孩為男為女是等可能的).【解】 設(shè)A=其中一個(gè)為女孩,B=至少有一個(gè)男孩,樣本點(diǎn)總數(shù)為23=8,故或在縮減樣本空間中求,此時(shí)樣本點(diǎn)總數(shù)為7.20.已知5%的男人和0.25%的女人是色盲,現(xiàn)隨機(jī)地挑選一人,此人恰為色盲,問此人是男人的概率(假設(shè)男人和女人各占人數(shù)的一半).【解】 設(shè)A=此人是男人,B=此人是色盲,則由貝葉斯公式 21.兩人約定上午9001000在公園會(huì)面,求一人要等另一人半小時(shí)以上的概率. 題21圖 題22圖【解】設(shè)兩人到達(dá)時(shí)刻為x,y,則0x,y60.事件“一人要等另一人半小時(shí)以上”等價(jià)于|x-y|>30.如圖陰影部分所示.22.從(0,1)中隨機(jī)地取兩個(gè)數(shù),求:(1) 兩個(gè)數(shù)之和小于的概率;(2) 兩個(gè)數(shù)之積小于的概率.【解】 設(shè)兩數(shù)為x,y,則0<x,y<1.(1) x+y<. (2) xy=<. 23.設(shè)P()=0.3,P(B)=0.4,P(A)=0.5,求P(BA)【解】 24.在一個(gè)盒中裝有15個(gè)乒乓球,其中有9個(gè)新球,在第一次比賽中任意取出3個(gè)球,比賽后放回原盒中;第二次比賽同樣任意取出3個(gè)球,求第二次取出的3個(gè)球均為新球的概率.【解】 設(shè)Ai=第一次取出的3個(gè)球中有i個(gè)新球,i=0,1,2,3.B=第二次取出的3球均為新球由全概率公式,有 25. 按以往概率論考試結(jié)果分析,努力學(xué)習(xí)的學(xué)生有90%的可能考試及格,不努力學(xué)習(xí)的學(xué)生有90%的可能考試不及格.據(jù)調(diào)查,學(xué)生中有80%的人是努力學(xué)習(xí)的,試問:(1)考試及格的學(xué)生有多大可能是不努力學(xué)習(xí)的人?(2)考試不及格的學(xué)生有多大可能是努力學(xué)習(xí)的人?【解】設(shè)A=被調(diào)查學(xué)生是努力學(xué)習(xí)的,則=被調(diào)查學(xué)生是不努力學(xué)習(xí)的.由題意知P(A)=0.8,P()=0.2,又設(shè)B=被調(diào)查學(xué)生考試及格.由題意知P(B|A)=0.9,P(|)=0.9,故由貝葉斯公式知(1) 即考試及格的學(xué)生中不努力學(xué)習(xí)的學(xué)生僅占2.702%(2) 即考試不及格的學(xué)生中努力學(xué)習(xí)的學(xué)生占30.77%.26. 將兩信息分別編碼為A和B傳遞出來,接收站收到時(shí),A被誤收作B的概率為0.02,而B被誤收作A的概率為0.01.信息A與B傳遞的頻繁程度為21.若接收站收到的信息是A,試問原發(fā)信息是A的概率是多少?【解】 設(shè)A=原發(fā)信息是A,則=原發(fā)信息是BC=收到信息是A,則=收到信息是B由貝葉斯公式,得 27.在已有兩個(gè)球的箱子中再放一白球,然后任意取出一球,若發(fā)現(xiàn)這球?yàn)榘浊?,試求箱子中原有一白球的概率(箱中原有什么球是等可能的顏色只有黑、白兩種)【解】設(shè)Ai=箱中原有i個(gè)白球(i=0,1,2),由題設(shè)條件知P(Ai)=,i=0,1,2.又設(shè)B=抽出一球?yàn)榘浊?由貝葉斯公式知28.某工廠生產(chǎn)的產(chǎn)品中96%是合格品,檢查產(chǎn)品時(shí),一個(gè)合格品被誤認(rèn)為是次品的概率為0.02,一個(gè)次品被誤認(rèn)為是合格品的概率為0.05,求在被檢查后認(rèn)為是合格品產(chǎn)品確是合格品的概率.【解】 設(shè)A=產(chǎn)品確為合格品,B=產(chǎn)品被認(rèn)為是合格品由貝葉斯公式得 29.某保險(xiǎn)公司把被保險(xiǎn)人分為三類:“謹(jǐn)慎的”,“一般的”,“冒失的”.統(tǒng)計(jì)資料表明,上述三種人在一年內(nèi)發(fā)生事故的概率依次為0.05,0.15和0.30;如果“謹(jǐn)慎的”被保險(xiǎn)人占20%,“一般的”占50%,“冒失的”占30%,現(xiàn)知某被保險(xiǎn)人在一年內(nèi)出了事故,則他是“謹(jǐn)慎的”的概率是多少?【解】 設(shè)A=該客戶是“謹(jǐn)慎的”,B=該客戶是“一般的”,C=該客戶是“冒失的”,D=該客戶在一年內(nèi)出了事故則由貝葉斯公式得 30.加工某一零件需要經(jīng)過四道工序,設(shè)第一、二、三、四道工序的次品率分別為0.02,0.03,0.05,0.03,假定各道工序是相互獨(dú)立的,求加工出來的零件的次品率.【解】設(shè)Ai=第i道工序出次品(i=1,2,3,4). 31.設(shè)每次射擊的命中率為0.2,問至少必須進(jìn)行多少次獨(dú)立射擊才能使至少擊中一次的概率不小于0.9?【解】設(shè)必須進(jìn)行n次獨(dú)立射擊.即為 故 n11至少必須進(jìn)行11次獨(dú)立射擊.32.證明:若P(AB)=P(A),則A,B相互獨(dú)立.【證】 即亦即 因此 故A與B相互獨(dú)立.33.三人獨(dú)立地破譯一個(gè)密碼,他們能破譯的概率分別為,求將此密碼破譯出的概率.【解】 設(shè)Ai=第i人能破譯(i=1,2,3),則 34.甲、乙、丙三人獨(dú)立地向同一飛機(jī)射擊,設(shè)擊中的概率分別是0.4,0.5,0.7,若只有一人擊中,則飛機(jī)被擊落的概率為0.2;若有兩人擊中,則飛機(jī)被擊落的概率為0.6;若三人都擊中,則飛機(jī)一定被擊落,求:飛機(jī)被擊落的概率.【解】設(shè)A=飛機(jī)被擊落,Bi=恰有i人擊中飛機(jī),i=0,1,2,3由全概率公式,得=(0.40.50.3+0.60.50.3+0.60.50.7)0.2+(0.40.50.3+0.40.50.7+0.60.50.7)0.6+0.40.50.7=0.45835.已知某種疾病患者的痊愈率為25%,為試驗(yàn)一種新藥是否有效,把它給10個(gè)病人服用,且規(guī)定若10個(gè)病人中至少有四人治好則認(rèn)為這種藥有效,反之則認(rèn)為無效,求:(1) 雖然新藥有效,且把治愈率提高到35%,但通過試驗(yàn)被否定的概率.(2) 新藥完全無效,但通過試驗(yàn)被認(rèn)為有效的概率.【解】(1) (2) 36.一架升降機(jī)開始時(shí)有6位乘客,并等可能地停于十層樓的每一層.試求下列事件的概率:(1) A=“某指定的一層有兩位乘客離開”;(2) B=“沒有兩位及兩位以上的乘客在同一層離開”;(3) C=“恰有兩位乘客在同一層離開”;(4) D=“至少有兩位乘客在同一層離開”.【解】 由于每位乘客均可在10層樓中的任一層離開,故所有可能結(jié)果為106種.(1) ,也可由6重貝努里模型:(2) 6個(gè)人在十層中任意六層離開,故(3) 由于沒有規(guī)定在哪一層離開,故可在十層中的任一層離開,有種可能結(jié)果,再從六人中選二人在該層離開,有種離開方式.其余4人中不能再有兩人同時(shí)離開的情況,因此可包含以下三種離開方式:4人中有3個(gè)人在同一層離開,另一人在其余8層中任一層離開,共有種可能結(jié)果;4人同時(shí)離開,有種可能結(jié)果;4個(gè)人都不在同一層離開,有種可能結(jié)果,故(4) D=.故37. n個(gè)朋友隨機(jī)地圍繞圓桌而坐,求下列事件的概率:(1) 甲、乙兩人坐在一起,且乙坐在甲的左邊的概率;(2) 甲、乙、丙三人坐在一起的概率;(3) 如果n個(gè)人并排坐在長桌的一邊,求上述事件的概率.【解】 (1) (2) (3) 38.將線段0,a任意折成三折,試求這三折線段能構(gòu)成三角形的概率【解】 設(shè)這三段長分別為x,y,a-x-y.則基本事件集為由0<x<a,0<y<a,0<a-x-y<a所構(gòu)成的圖形,有利事件集為由構(gòu)成的圖形,即如圖陰影部分所示,故所求概率為.39. 某人有n把鑰匙,其中只有一把能開他的門.他逐個(gè)將它們?nèi)ピ囬_(抽樣是無放回的).證明試開k次(k=1,2,n)才能把門打開的概率與k無關(guān).【證】 40.把一個(gè)表面涂有顏色的立方體等分為一千個(gè)小立方體,在這些小立方體中,隨機(jī)地取出一個(gè),試求它有i面涂有顏色的概率P(Ai)(i=0,1,2,3).【解】 設(shè)Ai=小立方體有i面涂有顏色,i=0,1,2,3. 在1千個(gè)小立方體中,只有位于原立方體的角上的小立方體是三面有色的,這樣的小立方體共有8個(gè).只有位于原立方體的棱上(除去八個(gè)角外)的小立方體是兩面涂色的,這樣的小立方體共有128=96個(gè).同理,原立方體的六個(gè)面上(除去棱)的小立方體是一面涂色的,共有886=384個(gè).其余1000-(8+96+384)=512個(gè)內(nèi)部的小立方體是無色的,故所求概率為,.41.對(duì)任意的隨機(jī)事件A,B,C,試證P(AB)+P(AC)-P(BC)P(A).【證】 42.將3個(gè)球隨機(jī)地放入4個(gè)杯子中去,求杯中球的最大個(gè)數(shù)分別為1,2,3的概率.【解】 設(shè)=杯中球的最大個(gè)數(shù)為i,i=1,2,3.將3個(gè)球隨機(jī)放入4個(gè)杯子中,全部可能放法有43種,杯中球的最大個(gè)數(shù)為1時(shí),每個(gè)杯中最多放一球,故而杯中球的最大個(gè)數(shù)為3,即三個(gè)球全放入一個(gè)杯中,故因此 或 43.將一枚均勻硬幣擲2n次,求出現(xiàn)正面次數(shù)多于反面次數(shù)的概率.【解】擲2n次硬幣,可能出現(xiàn):A=正面次數(shù)多于反面次數(shù),B=正面次數(shù)少于反面次數(shù),C=正面次數(shù)等于反面次數(shù),A,B,C兩兩互斥.可用對(duì)稱性來解決.由于硬幣是均勻的,故P(A)=P(B).所以由2n重貝努里試驗(yàn)中正面出現(xiàn)n次的概率為 故 44.擲n次均勻硬幣,求出現(xiàn)正面次數(shù)多于反面次數(shù)的概率.【解】設(shè)A=出現(xiàn)正面次數(shù)多于反面次數(shù),B=出現(xiàn)反面次數(shù)多于正面次數(shù),由對(duì)稱性知P(A)=P(B)(1) 當(dāng)n為奇數(shù)時(shí),正、反面次數(shù)不會(huì)相等.由P(A)+P(B)=1得P(A)=P(B)=0.5(2) 當(dāng)n為偶數(shù)時(shí),由上題知45.設(shè)甲擲均勻硬幣n+1次,乙擲n次,求甲擲出正面次數(shù)多于乙擲出正面次數(shù)的概率.【解】 令甲正=甲擲出的正面次數(shù),甲反=甲擲出的反面次數(shù).乙正=乙擲出的正面次數(shù),乙反=乙擲出的反面次數(shù).顯然有=(甲正乙正)=(n+1-甲反n-乙反)=(甲反1+乙反)=(甲反>乙反)由對(duì)稱性知P(甲正>乙正)=P(甲反>乙反)因此P(甲正>乙正)=46.證明“確定的原則”(Sure-thing):若P(A|C)P(B|C),P(A|)P(B|),則P(A)P(B).【證】由P(A|C)P(B|C),得即有 同理由 得 故 47.一列火車共有n節(jié)車廂,有k(kn)個(gè)旅客上火車并隨意地選擇車廂.求每一節(jié)車廂內(nèi)至少有一個(gè)旅客的概率.【解】 設(shè)Ai=第i節(jié)車廂是空的,(i=1,n),則其中i1,i2,in-1是1,2,n中的任n-1個(gè).顯然n節(jié)車廂全空的概率是零,于是 故所求概率為48.設(shè)隨機(jī)試驗(yàn)中,某一事件A出現(xiàn)的概率為>0.試證明:不論>0如何小,只要不斷地獨(dú)立地重復(fù)做此試驗(yàn),則A遲早會(huì)出現(xiàn)的概率為1.【證】在前n次試驗(yàn)中,A至少出現(xiàn)一次的概率為49.袋中裝有m只正品硬幣,n只次品硬幣(次品硬幣的兩面均印有國徽).在袋中任取一只,將它投擲r次,已知每次都得到國徽.試問這只硬幣是正品的概率是多少?【解】設(shè)A=投擲硬幣r次都得到國徽B=這只硬幣為正品由題知 則由貝葉斯公式知 50.巴拿赫(Banach)火柴盒問題:某數(shù)學(xué)家有甲、乙兩盒火柴,每盒有N根火柴,每次用火柴時(shí)他在兩盒中任取一盒并從中任取一根.試求他首次發(fā)現(xiàn)一盒空時(shí)另一盒恰有r根的概率是多少?第一次用完一盒火柴時(shí)(不是發(fā)現(xiàn)空)而另一盒恰有r根的概率又有多少?【解】以B1、B2記火柴取自不同兩盒的事件,則有.(1)發(fā)現(xiàn)一盒已空,另一盒恰剩r根,說明已取了2n-r次,設(shè)n次取自B1盒(已空),n-r次取自B2盒,第2n-r+1次拿起B(yǎng)1,發(fā)現(xiàn)已空。把取2n-r次火柴視作2n-r重貝努里試驗(yàn),則所求概率為式中2反映B1與B2盒的對(duì)稱性(即也可以是B2盒先取空).(2) 前2n-r-1次取火柴,有n-1次取自B1盒,n-r次取自B2盒,第2n-r次取自B1盒,故概率為51.求n重伯努利試驗(yàn)中A出現(xiàn)奇數(shù)次的概率.【解】 設(shè)在一次試驗(yàn)中A出現(xiàn)的概率為p.則由以上兩式相減得所求概率為若要求在n重貝努里試驗(yàn)中A出現(xiàn)偶數(shù)次的概率,則只要將兩式相加,即得.52.設(shè)A,B是任意兩個(gè)隨機(jī)事件,求P(+B)(A+B)(+)(A+)的值.【解】因?yàn)椋ˋB)()=AB(B)(A)=AB所求 故所求值為0.53.設(shè)兩兩相互獨(dú)立的三事件,A,B和C滿足條件:ABC=F,P(A)=P(B)=P(C)< 1/2,且P(ABC)=9/16,求P(A).【解】由 故或,按題設(shè)P(A)<,故P(A)=.54.設(shè)兩個(gè)相互獨(dú)立的事件A和B都不發(fā)生的概率為1/9,A發(fā)生B不發(fā)生的概率與B發(fā)生A不發(fā)生的概率相等,求P(A).【解】 故 故 由A,B的獨(dú)立性,及、式有 故 故 或(舍去)即P(A)=.55.隨機(jī)地向半圓0<y< (a為正常數(shù))內(nèi)擲一點(diǎn),點(diǎn)落在半圓內(nèi)任何區(qū)域的概率與區(qū)域的面積成正比,則原點(diǎn)和該點(diǎn)的連線與x軸的夾角小于/4的概率為多少?【解】利用幾何概率來求,圖中半圓面積為a2.陰影部分面積為故所求概率為56.設(shè)10件產(chǎn)品中有4件不合格品,從中任取兩件,已知所取兩件產(chǎn)品中有一件是不合格品,求另一件也是不合格品的概率.【解】 設(shè)A=兩件中至少有一件是不合格品,B=另一件也是不合格品57.設(shè)有來自三個(gè)地區(qū)的各10名、15名和25名考生的報(bào)名表,其中女生的報(bào)名表分別為3份、7份和5份.隨機(jī)地取一個(gè)地區(qū)的報(bào)名表,從中先后抽出兩份.(1) 求先抽到的一份是女生表的概率p;(2) 已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q. 【解】設(shè)Ai=報(bào)名表是取自第i區(qū)的考生,i=1,2,3.Bj=第j次取出的是女生表,j=1,2.則 (1) (2) 而 故 58. 設(shè)A,B為隨機(jī)事件,且P(B)>0,P(A|B)=1,試比較P(AB)與P(A)的大小. (2006研考)【解】因?yàn)?所以 .59. 某人向同一目標(biāo)獨(dú)立重復(fù)射擊,每次射擊命中目標(biāo)的概率為p(0<p<1),求此人第4次射擊恰好第2次命中目標(biāo)的概率.【解】這是伯努利概型.第4次射擊恰好第2次命中,即前三次命中一次,所以所求概率為.60. 在區(qū)間(0,1)中隨機(jī)地取兩個(gè)數(shù),求這兩個(gè)數(shù)之差的絕對(duì)值小于的概率.【解】設(shè)兩個(gè)數(shù)分別為x、y,則0<x<1,0<y<1,x-y<,畫出圖形,由幾何概型可得,所求概率為.17