歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > PPT文檔下載  

模式識別課件prch5part1ding.ppt

  • 資源ID:8589473       資源大?。?span id="kdemkar" class="font-tahoma">476KB        全文頁數(shù):30頁
  • 資源格式: PPT        下載積分:9.9積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號:
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。

模式識別課件prch5part1ding.ppt

PatternClassificationAllmaterialsintheseslidesweretakenfromPatternClassification 2nded byR O Duda P E HartandD G Stork JohnWiley Sons 2000withthepermissionoftheauthorsandthepublisher Chapter5 LinearDiscriminantFunctions Sections5 1 5 3 IntroductionLinearDiscriminantFunctionsandDecisionsSurfacesGeneralizedLinearDiscriminantFunctions 2 5 1Introduction Inchapter3 theunderlyingprobabilitydensitieswereknown Thetrainingsamplewasusedtoestimatetheparametersoftheseprobabilitydensities ML MAPestimations Inthischapter weonlyknowtheproperformsforthelineardiscriminantfunctions andusesamplestoestimatethevaluesofparametersforthediscriminantfunctions similartonon parametrictechniquesTheymaynotbeoptimal buttheyareverysimpleandeasytocomputetheyarechosenascandidatesforinitialandtrialclassifiersespeciallyintheabsenceofinformation 3 Theproblemoffindingalineardiscriminantfunctionwillbeformulatedasaproblemacriterionfunction 4 5 2Lineardiscriminantfunctionsanddecisionssurfaces Definition Itisafunctionthatisalinearcombinationofthecomponentsofxg x wtx w0 1 wherewistheweightvectorandw0thebias thresholdweight Atwo categoryclassifierwithadiscriminantfunctionoftheform 1 usesthefollowingrule Decide 1ifg x 0and 2ifg x w0and 2otherwiseIfg x 0 xisassignedtoeitherclass 5 6 Theequationg x 0definesthedecisionsurfacethatseparatespointsassignedtothecategory 1frompointsassignedtothecategory 2Wheng x islinear thedecisionsurfaceisahyperplaneAlgebraicmeasureofthedistancefromxtothehyperplane 7 8 Inconclusion alineardiscriminantfunctiondividesthefeaturespacebyahyperplanedecisionsurfaceTheorientationofthesurfaceisdeterminedbythenormalvectorwandthelocationofthesurfaceisdeterminedbythebias 9 Themulti categorycaseWedefineclineardiscriminantfunctionsandassignxto iifgi x gj x j i incaseofties theclassificationisundefinedInthiscase theclassifierisa linearmachine Alinearmachinedividesthefeaturespaceintocdecisionregions withgi x beingthelargestdiscriminantifxisintheregionRiForatwocontiguousregionsRiandRj theboundarythatseparatesthemisaportionofhyperplaneHijdefinedby gi x gj x wi wj tx wi0 wj0 0wi wjisnormaltoHijand 10 11 Itiseasytoshowthatthedecisionregionsforalinearmachineareconvex thisrestrictionlimitstheflexibilityandaccuracyoftheclassifier 12 5 3GeneralizedLinearDiscriminantFunctions DecisionboundarieswhichseparatebetweenclassesmaynotalwaysbelinearThecomplexityoftheboundariesmaysometimesrequesttheuseofhighlynon linearsurfacesApopularapproachtogeneralizetheconceptoflineardecisionfunctionsistoconsiderageneralizeddecisionfunctionas g x w1f1 x w2f2 x wNfN x wN 1 1 wherefi x 1 i Narescalarfunctionsofthepatternx x Rn EuclideanSpace 13 Introducingfn 1 x 1weget Thislatterrepresentationofg x impliesthatanydecisionfunctiondefinedbyequation 1 canbetreatedaslinearinthe N 1 dimensionalspace N 1 n g x maintainsitsnon linearitycharacteristicsinRn 14 Themostcommonlyusedgeneralizeddecisionfunctionisg x forwhichfi x 1 i N arepolynomialsQuadraticdecisionfunctionsfora2 dimensionalfeaturespace 15 Forpatternsx Rn themostgeneralquadraticdecisionfunctionisgivenby Thenumberoftermsattheright handsideis ThisisthetotalnumberofweightswhicharethefreeparametersoftheproblemIfforexamplen 3 thevectoris10 dimensionalIfforexamplen 10 thevectoris66 dimensional 16 Inthecaseofpolynomialdecisionfunctionsoforderm atypicalfi x isgivenby Itisapolynomialwithadegreebetween0andm Toavoidrepetitions werequesti1 i2 im whereg0 x wn 1 isthemostgeneralpolynomialdecisionfunctionoforderm 17 Example1 Letn 3andm 2then Example2 Letn 2andm 3then 18 Thecommonlyusedquadraticdecisionfunctioncanberepresentedasthegeneraln dimensionalquadraticsurface g x xTAx xTb cwherethematrixA aij thevectorb b1 b2 bn Tandc dependsontheweightswii wij wiofequation 2 IfAispositivedefinitethenthedecisionfunctionisahyperellipsoidwithaxesinthedirectionsoftheeigenvectorsofAInparticular ifA In Identity thedecisionfunctionissimplythen dimensionalhypersphere 19 IfAisnegativedefinite thedecisionfunctiondescribesahyperboloidInconclusion itisonlythematrixAwhichdeterminestheshapeandcharacteristicsofthedecisionfunction 20 Problem Considera3dimensionalspaceandcubicpolynomialdecisionfunctionsHowmanytermsareneededtorepresentadecisionfunctionifonlycubicandlinearfunctionsareassumedPresentthegeneral4thorderpolynomialdecisionfunctionfora2dimensionalpatternspaceLetR3betheoriginalpatternspaceandletthedecisionfunctionassociatedwiththepatternclasses 1and 2be forwhichg x 0ifx 1andg x 0ifx 2Rewriteg x asg x xTAx xTb cDeterminetheclassofeachofthefollowingpatternvectors 1 1 1 1 10 0 0 1 2 0 21 PositiveDefiniteMatricesAsquarematrixAispositivedefiniteifxTAx 0forallnonzerocolumnvectorsx ItisnegativedefiniteifxTAx 0forallnonzerox Itispositivesemi definiteifxTAx 0 Andnegativesemi definiteifxTAx 0forallx Thesedefinitionsarehardtocheckdirectlyandyoumightaswellforgetthemforallpracticalpurposes 22 Moreusefulinpracticearethefollowingproperties whichholdwhenthematrixAissymmetricandwhichareeasiertocheck TheithprincipalminorofAisthematrixAiformedbythefirstirowsandcolumnsofA So thefirstprincipalminorofAisthematrixAi a11 thesecondprincipalminoristhematrix 23 ThematrixAispositivedefiniteifallitsprincipalminorsA1 A2 AnhavestrictlypositivedeterminantsIfthesedeterminantsarenon zeroandalternateinsigns startingwithdet A1 0 thenthematrixAisnegativedefiniteIfthedeterminantsareallnon negative thenthematrixispositivesemi definiteIfthedeterminantalternateinsigns startingwithdet A1 0 thenthematrixisnegativesemi definite 24 Tofixideas considera2x2symmetricmatrix Itispositivedefiniteif det A1 a11 0det A2 a11a22 a12a12 0Itisnegativedefiniteif det A1 a110Itispositivesemi definiteif det A1 a11 0det A2 a11a22 a12a12 0Anditisnegativesemi definiteif det A1 a11 0det A2 a11a22 a12a12 0 25 Exercise1 Checkwhetherthefollowingmatricesarepositivedefinite negativedefinite positivesemi definite negativesemi definiteornoneoftheabove 26 SolutionsofExercise1 A1 2 0A2 8 1 7 0 AispositivedefiniteA1 2A2 2x 8 16 0 Aisnegativesemi positiveA1 2A2 8 4 4 0 AisnegativedefiniteA1 2 0A2 6 16 10 0 Aisnoneoftheabove 27 Exercise2 LetComputethedecisionboundaryassignedtothematrixA g x xTAx xTb c inthecasewherebT 1 2 andc 3Solvedet A I 0andfindtheshapeandthecharacteristicsofthedecisionboundaryseparatingtwoclasses 1and 2Classifythefollowingpoints xT 0 1 xT 1 1 28 SolutionofExercise2 1 2 Thislatterequationisastraightlinecolineartothevector 29 Thislatterequationisastraightlinecolineartothevector Theellipsisdecisionboundaryhastwoaxes whicharerespectivelycolineartothevectorsV1andV23 X 0 1 T g 0 1 10 x 1

注意事項(xiàng)

本文(模式識別課件prch5part1ding.ppt)為本站會員(max****ui)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!