歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

高考人教版數(shù)學理總復習練習:第七章 立體幾何 課時作業(yè)42 Word版含解析

  • 資源ID:77408814       資源大小:332.50KB        全文頁數(shù):17頁
  • 資源格式: DOC        下載積分:10積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

高考人教版數(shù)學理總復習練習:第七章 立體幾何 課時作業(yè)42 Word版含解析

課時作業(yè)42空間幾何體的表面積與體積1(2019·湖南五市十校聯(lián)考)如圖,小方格是邊長為1的正方形,一個幾何體的三視圖如圖所示,則該幾何體的表面積為(D)A496 B(26)96C(44)64 D(44)96解析:由三視圖知,該幾何體為一個圓錐和一個正方體的組合體,正方體的棱長為4,圓錐的高為4,底面半徑為2,所以該幾何體的表面積S6×42×22×2×(44)96.2(2019·福建質(zhì)檢)如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,俯視圖中的兩條曲線均為圓弧,則該幾何體的體積為(C)A64 B648C64 D64解析:由三視圖可知該幾何體是由棱長為4的正方體截去個圓錐和個圓柱所得到的,且圓錐的底面半徑為2,高為4,圓柱的底面半徑為2,高為4,所以該幾何體的體積為4364.故選C.3(2015·全國卷)已知A,B是球O的球面上兩點,AOB90°,C為該球面上的動點若三棱錐O-ABC體積的最大值為36,則球O的表面積為(C)A36 B64C144 D256解析:SOAB是定值,且VO-ABCVC-OAB,當OC平面OAB時,VC-OAB最大,即VO-ABC最大設球O的半徑為R,則(VO-ABC)max×R2×RR336,R6,球O的表面積S4R24×62144.4(2019·河南濮陽一模)已知三棱錐A-BCD中,ABD與BCD是邊長為2的等邊三角形且二面角A-BD-C為直二面角,則三棱錐A-BCD的外接球的表面積為(D)A. B5C6 D.解析:如圖,取BD中點M,連接AM,CM,取ABD,CBD的中心即AM,CM的三等分點P,Q,過P作平面ABD的垂線,過Q作平面CBD的垂線,兩垂線相交于點O,則點O為外接球的球心,如圖,其中OQ,CQ,連接OC,則外接球的半徑ROC,表面積為4R2,故選D.5一個多面體的直觀圖和三視圖如圖所示,點M是AB上的動點,記四面體EFMC的體積為V1,多面體ADF-BCE的體積為V2,則(B)A. B.C. D.解析:由三視圖可知多面體ADF-BCE是直三棱柱,其底面是等腰直角三角形(直角邊長為a),且四邊形DFEC與四邊形ABCD都是正方形,它們的邊長均為a.M是AB上的動點,且易知AB平面DFEC,點M到平面DFEC的距離等于點B到平面DFEC的距離,距離為a,V1VE-FMCVM-EFC·a·a·a,又V2a·a·a,故.6某工件的三視圖如圖所示,現(xiàn)將該工件通過切削,加工成一個體積盡可能大的長方體新工件,并使新工件的一個面落在原工件的一個面內(nèi),則原工件材料的利用率為(A)A. B.C. D.解析:原工件是一個底面半徑為1,高為2的圓錐,依題意加工后的新工件是圓錐的內(nèi)接長方體,且落在圓錐底面上的面是正方形,設正方形的邊長為a,長方體的高為h,則0a,0h2.于是,h2a.令f(a)V長方體a2h2a2a3,f(a)4a3a2,當f(a)0時,a.易知f(a)maxf.材料利用率,故選A.7(2017·全國卷)如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分后所得,則該幾何體的體積為(B)A90 B63C42 D36解析:由三視圖可知兩個同樣的幾何體可以拼成一個底面直徑為6,高為14的圓柱,所以該幾何體的體積V×32××1463,故選B.8已知三棱錐O-ABC的頂點A,B,C都在半徑為2的球面上,O是球心,AOB120°,當AOC與BOC的面積之和最大時,三棱錐O-ABC的體積為(B)A. B.C. D.解析:設球O的半徑為R,因為SAOCSBOCR2(sinAOCsinBOC),所以當AOCBOC90°時,SAOCSBOC取得最大值,此時OAOC,OBOC,又OBOAO,OA,OB平面AOB,所以OC平面AOB,所以V三棱錐O-ABCV三棱錐C-OABOC·OA·OBsinAOBR3sinAOB,故選B.9某組合體的三視圖如圖所示,則該組合體的體積為.解析:如圖所示,該組合體由一個四棱錐和四分之一個球組成,球的半徑為1,四棱錐的高為球的半徑,四棱錐的底面為等腰梯形,上底為2,下底為1,高為,所以該組合體的體積V××(21)××1××13.10(2018·全國卷)已知圓錐的頂點為S,母線SA,SB互相垂直,SA與圓錐底面所成角為30°.若SAB的面積為8,則該圓錐的體積為8.解析:設圓錐底面半徑為r,母線長為l,高為h,因為母線SA與底面所成的角為30°,所以lr.由SAB的面積為8得l28,即×r28,所以r212,hr2.所以圓錐的體積為r2h×12×28.11(2019·江西南昌二中模擬)在三棱錐S-ABC中,ABC是邊長為3的等邊三角形,SA,SB2,二面角S-AB-C的大小為120°,則此三棱錐的外接球的表面積為21.解析:根據(jù)題意得SA2AB2SB2,即SAAB.取AB的中點為D,SB的中點為M,連接CD、MD,得CDM為二面角S-AB-C的平面角,MDC120°.如圖,設三角形ABC的外心為O1,則O1在CD上,連接BO1,則CO1BO1,DO1.設外接球半徑為R,易知球心為過M垂直面ABS的垂線與過O1垂直面ABC的垂線的交點O.在四邊形MDO1O中,二面角S-AB-C的平面角MDC120°,且MOMD,O1ODO1,MDO1D,ODO160°,OO1O1Dtan60°,連接OB,R2OB2OOO1B23,球的表面積S4R221.12如圖,四棱錐P-ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,ABBCAD,BADABC90°.(1)證明:直線BC平面PAD;(2)若PCD的面積為2,求四棱錐P-ABCD的體積解:(1)證明:在平面ABCD內(nèi),因為BADABC90°,所以BCAD.又BC平面PAD,AD平面PAD,故BC平面PAD.(2)取AD的中點M,連接PM,CM.由ABBCAD及BCAD,ABC90°得四邊形ABCM為正方形,則CMAD.因為側(cè)面PAD為等邊三角形且垂直于底面ABCD,平面PAD平面ABCDAD,所以PMAD,PM底面ABCD.因為CM底面ABCD,所以PMCM.設BCx,則CMx,CDx,PMx,PCPD2x.取CD的中點N,連接PN,則PNCD,所以PNx.因為PCD的面積為2,所以×x×x2,解得x2(舍去)或x2.于是ABBC2,AD4,PM2.所以四棱錐P-ABCD的體積V××24.13九章算術是我國古代內(nèi)容極為豐富的數(shù)學名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈;上袤二丈,無廣;高一丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊柱的楔體,下底面寬3丈,長4丈;上棱長2丈,高一丈,問它的體積是多少?”已知1丈為10尺,現(xiàn)將該楔體的三視圖給出,其中網(wǎng)格紙上小正方形的邊長為1丈,則該楔體的體積為(A)A5 000立方尺 B5 500立方尺C6 000立方尺 D6 500立方尺解析:該楔體的直觀圖如圖中的幾何體ABCDEF.取AB的中點G,CD的中點H,連接FG,GH,HF,則該幾何體的體積為四棱錐F-GBCH與三棱柱ADE-GHF的體積之和又可以將三棱柱ADE-GHF割補成高為EF,底面積為S×3×1平方丈的一個直棱柱,故該楔體的體積V×2×2×3×15立方丈5 000立方尺14(2019·深圳調(diào)研)如圖所示,在平面四邊形ABCD中,ABADCD1,BD,BDCD,將其沿對角線BD折成四面體ABCD,使平面ABD平面BCD,若四面體ABCD的頂點在同一個球面上,則該球的體積為(A)A. B3 C. D2解析:如圖,取BD的中點為E,BC的中點為O,連接AE,OD,EO,AO.因為ABAD,所以AEBD.由于平面ABD平面BCD,所以AE平面BCD.因為ABADCD1,BD,所以AE,EO.所以OA.在RtBDC中,OBOCODBC,所以四面體ABCD的外接球的球心為O,半徑為.所以該球的體積V×3.15(2017·全國卷)如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O.D,E,F(xiàn)為圓O上的點,DBC,ECA,F(xiàn)AB分別是以BC,CA,AB為底邊的等腰三角形沿虛線剪開后,分別以BC,CA,AB為折痕折起DBC,ECA,F(xiàn)AB,使得D,E,F(xiàn)重合,得到三棱錐當ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為4.解析:解法一:由題意可知,折起后所得三棱錐為正三棱錐,設ABC的邊長為a(a>0)cm,則ABC的面積為a2 cm2,點O到ABC三邊的距離都為a cm,DBC的高為cm,則正三棱錐的高為 cm,25a>0,0<a<5,所得三棱錐的體積V×a2× × cm3.令t25a4a5,則t100a3a4,由t0,得a4(滿足0a5),易知此時所得三棱錐的體積最大,為4 cm3.解法二:由題意知折起以后所得三棱錐的直觀圖如圖所示,連接CO并延長交AB于H,連接DO、DH.則DO平面ABC.令OHx cm,則OC2x cm,DH(5x) cm,得OD cm,AB2x cm.則VD-ABC·x2·x2 cm3,令f(x)x2,則f(x),則當x(0,2)時,f(x)單調(diào)遞增,當x(2,2.5)時,f(x)單調(diào)遞減,所以當x2時,體積取最大值,為×44 cm3.16(2019·貴陽質(zhì)檢)如圖,ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC平面ABC,AB2,EB.(1)求證:DE平面ACD;(2)設ACx,V(x)表示三棱錐B-ACE的體積,求函數(shù)V(x)的解析式及最大值解:(1)證明:四邊形DCBE為平行四邊形,CDBE,BCDE.DC平面ABC,BC平面ABC,DCBC.AB是圓O的直徑,BCAC,且DCACC,DC,AC平面ADC,BC平面ADC.DEBC,DE平面ADC.(2)DC平面ABC,BE平面ABC.在RtABE中,AB2,EB.在RtABC中,ACx,BC(0x2),SABCAC·BCx·,V(x)V三棱錐E-ABCx·(0x2)x2(4x2)24,當且僅當x24x2,即x時取等號,當x時,體積有最大值.

注意事項

本文(高考人教版數(shù)學理總復習練習:第七章 立體幾何 課時作業(yè)42 Word版含解析)為本站會員(沈***)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復下載不扣分。




關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!