歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > PPT文檔下載  

高中數(shù)學 第二章 圓錐曲線與方程本章優(yōu)化總結課件 湘教版選修21

  • 資源ID:71333227       資源大?。?span id="dqspckr" class="font-tahoma">929.01KB        全文頁數(shù):27頁
  • 資源格式: PPT        下載積分:10積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

高中數(shù)學 第二章 圓錐曲線與方程本章優(yōu)化總結課件 湘教版選修21

本章本章優(yōu)化總結優(yōu)化總結第二章 圓錐曲線與方程專題探究精講專題探究精講本本章章優(yōu)優(yōu)化化總總結結知識體系網(wǎng)絡知識體系網(wǎng)絡章末綜合檢測章末綜合檢測知識體系網(wǎng)絡知識體系網(wǎng)絡專題探究精講專題探究精講圓錐曲線的定義圓錐曲線的定義(1)平面內滿足平面內滿足|PF1|PF2|2a(2a|F1F2|)的點的點P的軌跡叫作橢圓,定義可實現(xiàn)橢圓上的點到兩焦的軌跡叫作橢圓,定義可實現(xiàn)橢圓上的點到兩焦點的距離的相互轉化點的距離的相互轉化(2)平面內滿足平面內滿足|PF1|PF2|2a(2a|F1F2|)的點的點P的軌跡叫作雙曲線,的軌跡叫作雙曲線,|PF1|PF2|2a(2a|F1F2|)表示焦點表示焦點F2對應的一支,定義可實現(xiàn)雙曲線上的對應的一支,定義可實現(xiàn)雙曲線上的點到兩焦點的距離的相互轉化點到兩焦點的距離的相互轉化(3)平面內與一個定點平面內與一個定點F和一條定直線和一條定直線l(不經過點不經過點F)距離相等的點的軌跡叫作拋物線,定義可實現(xiàn)拋距離相等的點的軌跡叫作拋物線,定義可實現(xiàn)拋物線上的點到焦點與到準線距離的相互轉化物線上的點到焦點與到準線距離的相互轉化【答案】【答案】B圓錐曲線的性質圓錐曲線的性質(1)圓錐曲線的范圍往往作為解題的隱含條件圓錐曲線的范圍往往作為解題的隱含條件(2)橢圓、雙曲線有兩條對稱軸和一個對稱中心,橢圓、雙曲線有兩條對稱軸和一個對稱中心,拋物線只有一條對稱軸拋物線只有一條對稱軸(3)橢圓有四個頂點,雙曲線有兩個頂點,拋物橢圓有四個頂點,雙曲線有兩個頂點,拋物線只有一個頂點線只有一個頂點(4)雙曲線焦點位置不同,漸近線方程不同雙曲線焦點位置不同,漸近線方程不同(5)圓錐曲線中基本量圓錐曲線中基本量a,b,c,e,p的幾何意義的幾何意義及相互轉化及相互轉化【答案】【答案】D在討論直線和圓錐曲線的位置關系時,先聯(lián)立方在討論直線和圓錐曲線的位置關系時,先聯(lián)立方程組,再消去程組,再消去x(或或y),得到關于,得到關于y(或或x)的方的方程方程解的個數(shù)即為直線與圓錐曲線的交點個程方程解的個數(shù)即為直線與圓錐曲線的交點個數(shù)數(shù) 直線與圓錐曲線的位置關系直線與圓錐曲線的位置關系圓錐曲線中的定點、定值問題往往與圓錐曲線中圓錐曲線中的定點、定值問題往往與圓錐曲線中的的“常數(shù)常數(shù)”有關,如橢圓的長、短軸,雙曲線的有關,如橢圓的長、短軸,雙曲線的虛、實軸;拋物線的焦點等可以通過直接計算虛、實軸;拋物線的焦點等可以通過直接計算而得到,另外還可以用而得到,另外還可以用“特例法特例法”和和“相關曲線相關曲線系法系法”求得求得圓錐曲線中的最值問題,通常有兩類:一類是有圓錐曲線中的最值問題,通常有兩類:一類是有關長度、面積等的最值問題;一類是圓錐曲線中關長度、面積等的最值問題;一類是圓錐曲線中有關幾何元素的最值問題這兩類問題的解決往有關幾何元素的最值問題這兩類問題的解決往往要通過回歸定義,結合幾何知識,建立往要通過回歸定義,結合幾何知識,建立圓錐曲線中的定點、定值、最值問題圓錐曲線中的定點、定值、最值問題目標函數(shù),利用函數(shù)的性質或不等式知識,三目標函數(shù),利用函數(shù)的性質或不等式知識,三角函數(shù)有界性,以及數(shù)形結合、設參、轉化代角函數(shù)有界性,以及數(shù)形結合、設參、轉化代換等途徑來解決特別注意函數(shù)思想,觀察分換等途徑來解決特別注意函數(shù)思想,觀察分析圖形特征,利用數(shù)形結合等思想方法析圖形特征,利用數(shù)形結合等思想方法 如圖所示,過拋物線如圖所示,過拋物線y22px的頂點的頂點O作作兩條互相垂直的弦交拋物線于兩條互相垂直的弦交拋物線于A、B兩點求:兩點求:AOB面積的最小值面積的最小值求曲線方程是解析幾何的基本問題之一,其求解求曲線方程是解析幾何的基本問題之一,其求解的基本方法有:的基本方法有:(1)直接法:當動點與已知條件發(fā)生聯(lián)系時,在設直接法:當動點與已知條件發(fā)生聯(lián)系時,在設曲線上的動點坐標為曲線上的動點坐標為(x,y)后,可根據(jù)題設條件后,可根據(jù)題設條件將普通語言運用基本公式將普通語言運用基本公式(如兩點間距離公式、如兩點間距離公式、點到直線距離公式,斜率公式、面積公式等點到直線距離公式,斜率公式、面積公式等)和和向量坐標運算,變換成向量坐標運算,變換成x,y間的關系式間的關系式(等式等式),從而得到軌跡方程,這種求軌跡方程的方法稱為從而得到軌跡方程,這種求軌跡方程的方法稱為直接法直接法(又稱直譯法又稱直譯法)直接法求軌跡經常要聯(lián)系直接法求軌跡經常要聯(lián)系平面圖形的性質平面圖形的性質曲線的方程曲線的方程(2)定義法:若動點運動的幾何條件滿足某種已知定義法:若動點運動的幾何條件滿足某種已知曲線的定義,可以設出其標準方程,然后用待定曲線的定義,可以設出其標準方程,然后用待定系數(shù)法求解這種求軌跡方程的方法稱為定義法,系數(shù)法求解這種求軌跡方程的方法稱為定義法,利用定義法求軌跡方程要善于抓住曲線的定義特利用定義法求軌跡方程要善于抓住曲線的定義特征征(3)代入法:若求軌跡上的動點代入法:若求軌跡上的動點P(x,y)與另一個已與另一個已知曲線知曲線C:F(x,y)0上的動點上的動點Q(x,y)存在某種存在某種關系,可把點關系,可把點Q的坐標用點的坐標用點P的坐標表示出來,然的坐標表示出來,然后代入已知曲線后代入已知曲線C的方程的方程F(x,y)0,化簡即得所,化簡即得所求軌跡方程,這就叫代入法求軌跡方程,這就叫代入法(4)參數(shù)法:如果軌跡的動點參數(shù)法:如果軌跡的動點P(x,y)的坐標之間的的坐標之間的關系不易找到,也沒有相關信息可用,可先考慮關系不易找到,也沒有相關信息可用,可先考慮將將x,y用一個或幾個參數(shù)來表示,消去參數(shù)來求用一個或幾個參數(shù)來表示,消去參數(shù)來求軌跡方程軌跡方程(5)設而不求法:求弦中點的軌跡方程,常常運用設而不求法:求弦中點的軌跡方程,常常運用“設而不求設而不求”的技巧通過中點坐標及斜率的代的技巧通過中點坐標及斜率的代換達到求出軌跡方程的目的換達到求出軌跡方程的目的(6)幾何法:根據(jù)曲線的某種幾何性質和特征,通幾何法:根據(jù)曲線的某種幾何性質和特征,通過推理列出等式求出軌跡方程,這種求軌跡的方過推理列出等式求出軌跡方程,這種求軌跡的方法叫作幾何法法叫作幾何法(7)交軌法:在求動點軌跡方程時,經常遇到求兩交軌法:在求動點軌跡方程時,經常遇到求兩動曲線的交點軌跡方程問題,我們列出兩動曲線動曲線的交點軌跡方程問題,我們列出兩動曲線的方程再設法消去曲線中的參數(shù)即可得到交點的的方程再設法消去曲線中的參數(shù)即可得到交點的軌跡方程軌跡方程 設圓設圓C:(x1)2y21,過原點作圓的,過原點作圓的弦弦OA,求,求OA中點中點B的軌跡方程的軌跡方程【名師點評】【名師點評】求軌跡方程常用的幾種方法,在求軌跡方程常用的幾種方法,在本題中都可以應用在解題中最容易出錯的環(huán)節(jié)本題中都可以應用在解題中最容易出錯的環(huán)節(jié)是軌跡方程中的變量取值范圍,要謹慎分析和高是軌跡方程中的變量取值范圍,要謹慎分析和高度重視度重視

注意事項

本文(高中數(shù)學 第二章 圓錐曲線與方程本章優(yōu)化總結課件 湘教版選修21)為本站會員(沈***)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。 若此文所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復下載不扣分。




關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!