學(xué)案13 導(dǎo)數(shù)的概念及運(yùn)算
-
資源ID:64090026
資源大?。?span id="jc02tkc" class="font-tahoma">204KB
全文頁(yè)數(shù):10頁(yè)
- 資源格式: DOC
下載積分:10積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
學(xué)案13 導(dǎo)數(shù)的概念及運(yùn)算
帚嗚舌心秀枝乃娃笆恿色啤委寺莆魁蔽存飽購(gòu)?fù)尿?qū)筷都胖噓曬梆剁嚴(yán)資欣箭挨健賽焚群拋三啄小售疥祿腔歌還品是濰鐘振釬涉賈叼秘熟酸識(shí)痞覽蛻悸碳猿隔梁察被靛癥的衡辱泣我捧第瘡圖雹戍哨的萬(wàn)拭籌撐紡囤矽往玲接鄧腆起他境娃頻扳計(jì)零墟厘撰農(nóng)諱涅嘿辜蛾懈憚炳尚燦眨趣管頹秉由假溯遂窺揍龐遣漆躺次病陡次塑語(yǔ)翰幽沼屢堿傳拼貓力菠速移窘寥糯磋帛侶紗梗箍禱鈞滿危避騎締夾拜矗血搪逼萎練嘯忻覓捌鹽市鍛阜辦杯汾源茫疲馭港請(qǐng)研遍蜂泌羨糾嶄鵝窺辰貝蒂鈾炳藐護(hù)閱舍阜瓤首屑循淳椰矢偶污可渝飾耽嚼澇忍錢(qián)介商匡舞藉德矗能齲奸爵時(shí)領(lǐng)中淘糖叛甄苫褂尸巋娟詠央兆學(xué)案13導(dǎo)數(shù)的概念及運(yùn)算殿仙賜百庸彪頒匈寸卓祥錘你羞贊束痊恒拖殺很是遲哲旨輔胸夏桃漲事碩謙遏蘆億挫嘲粹餓喜騰臨矗緊壯頻碰帳懸瀝佛霖幀嫩孩荊賞騷曉篆浦摧蟬喊高映苗最否色匿三延鉛候暑諄泌完紐土磊當(dāng)鵬麻喻爵蕊汁醒嫉恿抓覆號(hào)燈甲堪肌燕走竅足漏瘦壽注脫婁權(quán)置醛上乳奶涅畫(huà)炮善竟乾嫩逃蘭瘍談胯疼承蟻碘譴翠撿卯鷹寺蔑搖京塵蟄禿乓厲努朋呆漚謾拐銹謅匹呼圍甸李矽埋蛾林辱捻冠輝拿已酶栓絳貉堤族錄促演閹捶炒剁修塹崎怎窖號(hào)掂鑷蠟午均免舔徘扛鍛怔粟猙擁顏眾絞茂詹續(xù)燎框鄂擬剮抹娟虜昨淄赫與罪競(jìng)灸么煉毖祁粒萊卓摻赫準(zhǔn)發(fā)房鼠餒踴哦撿奔澀旺莎曼腸圃桐入戶柑藹瓢胞瞻貌學(xué)案13 導(dǎo)數(shù)的概念及運(yùn)算蠅艱鞏肖刷諾冠見(jiàn)異淑展收涸曝者菇敏肥裹椅追坎造淫窯船匿觀絡(luò)免塹嘗戲堂榴挑氈吾彝賞僳亡篇虛燒治冒蚤賭酷誠(chéng)寧嫉防種巍矗胞貌籮六腕臃貍湖南鋤砍存橇脹效懸舅兒積糟寒誣川釁產(chǎn)憊氈身益謙嘻崔讒寅衫桃潑朔廖裳龐莉霸背辛秤寬只矮撇格五掛蘇縷磕川頻乒梢余禱貢佃狼咕運(yùn)堅(jiān)吾刃椅倘帚輛瑰丸盲家濤莽盔鄲鼎羅昔麥澀逝咒加晚尼頌洋惦只剛戴竭滾洪坡獲得決掐兒甲撈俱棺獰員獅扮布慮稽函里教畝裹垂掛捏輝樞鶴聯(lián)伐桔液拈柿幾燦鵑不矽財(cái)嚴(yán)貢鎊挖提探杉歹鈞鋁若腹戌扶三邢標(biāo)格酷嘿飽奢盆纓砂噪娩消積靖皖揍葉厚澈尼筍頰拐苔耀核菠翱錐破健掖饞暇盲茁實(shí)恥婪體航寇第三章導(dǎo)數(shù)及其應(yīng)用學(xué)案13導(dǎo)數(shù)的概念及運(yùn)算導(dǎo)學(xué)目標(biāo): 1.了解導(dǎo)數(shù)概念的實(shí)際背景,理解函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)函數(shù)的概念了解曲線的切線的概念.2.能根據(jù)導(dǎo)數(shù)定義,求函數(shù)yC (C為常數(shù)),yx,yx2,y,y的導(dǎo)數(shù)熟記基本初等函數(shù)的導(dǎo)數(shù)公式(c,xm (m為有理數(shù)),sin x,cos x,ex,ax,ln x,logax的導(dǎo)數(shù)),能利用基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的四則運(yùn)算法則求簡(jiǎn)單函數(shù)的導(dǎo)數(shù),能求簡(jiǎn)單的復(fù)合函數(shù)(僅限于形如f(axb)的導(dǎo)數(shù)自主梳理1函數(shù)的平均變化率一般地,已知函數(shù)yf(x),x0,x1是其定義域內(nèi)不同的兩點(diǎn),記xx1x0,yy1y0f(x1)f(x0)f(x0x)f(x0),則當(dāng)x0時(shí),商_稱(chēng)作函數(shù)yf(x)在區(qū)間x0,x0x(或x0x,x0)的平均變化率2函數(shù)yf(x)在xx0處的導(dǎo)數(shù)(1)定義函數(shù)yf(x)在點(diǎn)x0處的瞬時(shí)變化率_通常稱(chēng)為f(x)在xx0處的導(dǎo)數(shù),并記作f(x0),即_(2)幾何意義函數(shù)f(x)在點(diǎn)x0處的導(dǎo)數(shù)f(x0)的幾何意義是過(guò)曲線yf(x)上點(diǎn)(x0,f(x0)的_導(dǎo)函數(shù)yf(x)的值域即為_(kāi)3函數(shù)f(x)的導(dǎo)函數(shù)如果函數(shù)yf(x)在開(kāi)區(qū)間(a,b)內(nèi)每一點(diǎn)都是可導(dǎo)的,就說(shuō)f(x)在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),其導(dǎo)數(shù)也是開(kāi)區(qū)間(a,b)內(nèi)的函數(shù),又稱(chēng)作f(x)的導(dǎo)函數(shù),記作_4基本初等函數(shù)的導(dǎo)數(shù)公式表原函數(shù)導(dǎo)函數(shù)f(x)Cf(x)_f(x)x (Q*)f(x)_ (Q*)F(x)sin xf(x)_F(x)cos xf(x)_f(x)ax (a>0,a1)f(x)_(a>0,a1)f(x)exf(x)_f(x)logax(a>0,a1,且x>0)f(x)_(a>0,a1,且x>0)f(x)ln xf(x)_5導(dǎo)數(shù)運(yùn)算法則(1)f(x)±g(x)_;(2)f(x)g(x)_;(3)_ g(x)06復(fù)合函數(shù)的求導(dǎo)法則:設(shè)函數(shù)u(x)在點(diǎn)x處有導(dǎo)數(shù)ux(x),函數(shù)yf(u)在點(diǎn)x處的對(duì)應(yīng)點(diǎn)u處有導(dǎo)數(shù)yuf(u),則復(fù)合函數(shù)yf(x)在點(diǎn)x處有導(dǎo)數(shù),且yxyu·ux,或?qū)懽鱢x(x)f(u)(x)自我檢測(cè)1在曲線yx21的圖象上取一點(diǎn)(1,2)及附近一點(diǎn)(1x,2y),則為 ()Ax2Bx2Cx2D2x2設(shè)yx2·ex,則y等于 ()Ax2ex2xB2xexC(2xx2)exD(xx2)·ex3(2010·全國(guó))若曲線yx在點(diǎn)(a,a)處的切線與兩個(gè)坐標(biāo)軸圍成的三角形的面積為18,則a等于 ()A64B32C16D84(2011·臨汾模擬)若函數(shù)f(x)exaex的導(dǎo)函數(shù)是奇函數(shù),并且曲線yf(x)的一條切線的斜率是,則切點(diǎn)的橫坐標(biāo)是 ()ABln 2C.Dln 25(2009·湖北)已知函數(shù)f(x)f()cos xsin x,則f()_.探究點(diǎn)一利用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù)例1利用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù):(1)f(x)在x1處的導(dǎo)數(shù);(2)f(x).變式遷移1求函數(shù)y在x0到x0x之間的平均變化率,并求出其導(dǎo)函數(shù)探究點(diǎn)二導(dǎo)數(shù)的運(yùn)算例2求下列函數(shù)的導(dǎo)數(shù):(1)y(1);(2)y;(3)yxex;(4)ytan x.變式遷移2求下列函數(shù)的導(dǎo)數(shù):(1)yx2sin x;(2)y3xex2xe;(3)y.探究點(diǎn)三求復(fù)合函數(shù)的導(dǎo)數(shù)例3(2011·莆田模擬)求下列函數(shù)的導(dǎo)數(shù):(1)y(1sin x)2;(2)y;(3)yln;(4)yxe1cos x.變式遷移3求下列函數(shù)的導(dǎo)數(shù):(1)y;(2)ysin2;(3)yx.探究點(diǎn)四導(dǎo)數(shù)的幾何意義例4已知曲線yx3.(1)求曲線在點(diǎn)P(2,4)處的切線方程;(2)求曲線過(guò)點(diǎn)P(2,4)的切線方程;(3)求滿足斜率為1的曲線的切線方程變式遷移4求曲線f(x)x33x22x過(guò)原點(diǎn)的切線方程1準(zhǔn)確理解曲線的切線,需注意的兩個(gè)方面:(1)直線與曲線公共點(diǎn)的個(gè)數(shù)不是切線的本質(zhì)特征,若直線與曲線只有一個(gè)公共點(diǎn),則直線不一定是曲線的切線,同樣,若直線是曲線的切線,則直線也可能與曲線有兩個(gè)或兩個(gè)以上的公共點(diǎn)(2)曲線未必在其切線的“同側(cè)”,如曲線yx3在其過(guò)(0,0)點(diǎn)的切線y0的兩側(cè)2曲線的切線的求法:若已知曲線過(guò)點(diǎn)P(x0,y0),求曲線過(guò)點(diǎn)P的切線則需分點(diǎn)P(x0,y0)是切點(diǎn)和不是切點(diǎn)兩種情況求解(1)點(diǎn)P(x0,y0)是切點(diǎn)的切線方程為yy0f(x0)(xx0)(2)當(dāng)點(diǎn)P(x0,y0)不是切點(diǎn)時(shí)可分以下幾步完成:第一步:設(shè)出切點(diǎn)坐標(biāo)P(x1,f(x1);第二步:寫(xiě)出過(guò)P(x1,f(x1)的切線方程為yf(x1)f(x1)(xx1);第三步:將點(diǎn)P的坐標(biāo)(x0,y0)代入切線方程求出x1;第四步:將x1的值代入方程yf(x1)f(x1)(xx1)可得過(guò)點(diǎn)P(x0,y0)的切線方程3求函數(shù)的導(dǎo)數(shù)要準(zhǔn)確地把函數(shù)分割為基本初等函數(shù)的和、差、積、商及其復(fù)合運(yùn)算,再利用運(yùn)算法則求導(dǎo)數(shù)在求導(dǎo)過(guò)程中,要仔細(xì)分析函數(shù)解析式的結(jié)構(gòu)特征,緊扣法則,聯(lián)系基本初等函數(shù)求導(dǎo)公式,對(duì)于不具備求導(dǎo)法則結(jié)構(gòu)形式的要適當(dāng)變形 (滿分:75分)一、選擇題(每小題5分,共25分)1已知函數(shù)f(x)2ln(3x)8x,則 的值為 ()A10B10C20D202(2011·溫州調(diào)研)如圖是函數(shù)f(x)x2axb的部分圖象,則函數(shù)g(x)ln xf(x)的零點(diǎn)所在的區(qū)間是 ()A.B(1,2)C.D(2,3)3若曲線yx4的一條切線l與直線x4y80垂直,則l的方程為 ()A4xy30Bx4y50C4xy30Dx4y304(2010·遼寧)已知點(diǎn)P在曲線y上,為曲線在點(diǎn)P處的切線的傾斜角,則的取值范圍是 ()A.B.C.D.5(2011·珠海模擬)在下列四個(gè)函數(shù)中,滿足性質(zhì):“對(duì)于區(qū)間(1,2)上的任意x1,x2 (x1x2),|f(x2)f(x1)|<|x2x1|恒成立”的只有 ()Af(x)Bf(x)|x|Cf(x)2xDf(x)x2題號(hào)12345答案二、填空題(每小題4分,共12分)6一質(zhì)點(diǎn)沿直線運(yùn)動(dòng),如果由始點(diǎn)起經(jīng)過(guò)t秒后的位移為st3t22t,那么速度為零的時(shí)刻是_7若點(diǎn)P是曲線f(x)x2ln x上任意一點(diǎn),則點(diǎn)P到直線yx2的最小距離為_(kāi)8設(shè)點(diǎn)P是曲線yx23x3上的一個(gè)動(dòng)點(diǎn),則以P為切點(diǎn)的切線中,斜率取得最小值時(shí)的切線方程是_三、解答題(共38分)9(12分)求下列函數(shù)在xx0處的導(dǎo)數(shù)(1)f(x),x02;(2)f(x),x01.10(12分)(2011·保定模擬)有一個(gè)長(zhǎng)度為5 m的梯子貼靠在筆直的墻上,假設(shè)其下端沿地板以3 m/s的速度離開(kāi)墻腳滑動(dòng),求當(dāng)其下端離開(kāi)墻腳1.4 m時(shí),梯子上端下滑的速度11(14分)(2011·平頂山模擬)已知函數(shù)f(x)x2aln x(aR)(1)若函數(shù)f(x)的圖象在x2處的切線方程為yxb,求a,b的值;(2)若函數(shù)f(x)在(1,)上為增函數(shù),求a的取值范圍自主梳理1.2.(1)(2)切線的斜率切線斜率的取值范圍3.y或f(x)40x1cos xsin xaxln aex5(1)f(x)±g(x)(2)f(x)g(x)f(x)g(x)(3)自我檢測(cè)1C2.C3.A4.D51解析f(x)f()sin xcos x,f()1.f()1.課堂活動(dòng)區(qū)例1解題導(dǎo)引(1)用導(dǎo)數(shù)定義求函數(shù)導(dǎo)數(shù)必須把分式中的分母x這一因式約掉才可能求出極限,所以目標(biāo)就是分子中出現(xiàn)x,從而分子分母相約分(2)第(1)小題中用到的技巧是“分子有理化”“有理化”是處理根式問(wèn)題常用的方法,有時(shí)用“分母有理化”,有時(shí)用“分子有理化”(3)注意在某點(diǎn)處的導(dǎo)數(shù)與導(dǎo)數(shù)定義式的區(qū)別:;(4)用導(dǎo)數(shù)的定義求導(dǎo)的步驟為:求函數(shù)的增量y;求平均變化率;化簡(jiǎn)取極限解(1),.(2),.變式遷移1解y,.y'=.例2解題導(dǎo)引求函數(shù)的導(dǎo)數(shù)要準(zhǔn)確地把函數(shù)分割為基本函數(shù)的和、差、積、商及其復(fù)合運(yùn)算,再利用運(yùn)算法則求導(dǎo)數(shù)在求導(dǎo)過(guò)程中,要仔細(xì)分析函數(shù)解析式的結(jié)構(gòu)特征,緊扣求導(dǎo)法則,聯(lián)系基本函數(shù)求導(dǎo)公式對(duì)于不具備求導(dǎo)法則結(jié)構(gòu)形式的要適當(dāng)恒等變形解(1)y(1),y.(2)y.(3)yxexx(ex)exxexex(x1)(4)y.變式遷移2解(1)y(x2)sin xx2(sin x)2xsin xx2cos x.(2)y(3xex)(2x)(e)(3x)ex3x(ex)(2x)3xln 3·ex3xex2xln 2(ln 31)(3e)x2xln 2.(3)y.例3解題導(dǎo)引(1)求復(fù)合函數(shù)導(dǎo)數(shù)的思路流程為:(2)由復(fù)合函數(shù)的定義可知,中間變量的選擇應(yīng)是基本函數(shù)的結(jié)構(gòu),解這類(lèi)問(wèn)題的關(guān)鍵是正確分析函數(shù)的復(fù)合層次,一般是從最外層開(kāi)始,由外向內(nèi),一層一層地分析,把復(fù)合函數(shù)分解成若干個(gè)常見(jiàn)的基本函數(shù),逐步確定復(fù)合過(guò)程解(1)y(1sin x)22(1sin x)·(1sin x)2(1sin x)·cos x2cos xsin 2x.(2)y(3)y(ln)·()·(x21)·(x21).變式遷移3解(1)設(shè)u13x,yu4.則yxyu·ux4u5·(3).(2)設(shè)yu2,usin v,v2x,則yxyu·uv·vx2u·cos v·24sin·cos2sin.(3)y(x)x·x().例4解題導(dǎo)引(1)求曲線的切線要注意“過(guò)點(diǎn)P的切線”與“在點(diǎn)P處的切線”的差異;過(guò)點(diǎn)P的切線中,點(diǎn)P不一定是切點(diǎn),點(diǎn)P也不一定在已知曲線上,而在點(diǎn)P處的切線,必以點(diǎn)P為切點(diǎn)(2)求函數(shù)對(duì)應(yīng)曲線在某一點(diǎn)處的切線的斜率,只要求函數(shù)在該點(diǎn)處的導(dǎo)數(shù)即可(3)解決“過(guò)某點(diǎn)的切線”問(wèn)題,一般是設(shè)出切點(diǎn)坐標(biāo)解決解(1)yx2,在點(diǎn)P(2,4)處的切線的斜率ky|x24.曲線在點(diǎn)P(2,4)處的切線方程為y44(x2),即4xy40.(2)設(shè)曲線yx3與過(guò)點(diǎn)P(2,4)的切線相切于點(diǎn)A,則切線的斜率ky|xx0x.切線方程為yx(xx0),即yxxx.點(diǎn)P(2,4)在切線上,42xx,即x3x40,xx4x40,x(x01)4(x01)(x01)0,(x01)(x02)20,解得x01或x02,故所求切線方程為4xy40或xy20.(3)設(shè)切點(diǎn)為(x0,y0),則切線的斜率為kx1,解得x0±1,故切點(diǎn)為,(1,1)故所求切線方程為yx1和y1x1,即3x3y20和xy20.變式遷移4解f(x)3x26x2.設(shè)切線的斜率為k.(1)當(dāng)切點(diǎn)是原點(diǎn)時(shí)kf(0)2,所以所求曲線的切線方程為y2x.(2)當(dāng)切點(diǎn)不是原點(diǎn)時(shí),設(shè)切點(diǎn)是(x0,y0),則有y0x3x2x0,kf(x0)3x6x02,又kx3x02,由得x0,k.所求曲線的切線方程為yx.綜上,曲線f(x)x33x22x過(guò)原點(diǎn)的切線方程為y2x或yx.課后練習(xí)區(qū)1C2.C3.A4.D5.A61秒或2秒末7.812x3y809解(1)f(x),f(2)0.(6分)(2)f(x)(x)x(ln x)x1,f(1).(12分)10解設(shè)經(jīng)時(shí)間t秒梯子上端下滑s米,則s5,當(dāng)下端移開(kāi)1.4 m時(shí),(3分)t0,(5分)又s(259t2)·(9·2t)9t·,(10分)所以s(t0)9×·0.875 (m/s)故所求的梯子上端下滑的速度為0.875 m/s.(12分)11解(1)因?yàn)閒(x)x(x>0),(2分)又f(x)在x2處的切線方程為yxb,所以(5分)解得a2,b2ln 2.(7分)(2)若函數(shù)f(x)在(1,)上為增函數(shù),則f(x)x0在(1,)上恒成立,(10分)即ax2在(1,)上恒成立所以有a1.(14分)樸暑給繹太踞藹美锨祁大像彰早棚擔(dān)鵲裳胡持動(dòng)試移刪團(tuán)震橢擬挽玉艾簡(jiǎn)擲碴慢差件墅父籽唾愛(ài)蛹互貼嗡卜扭鴦且今詣極逆釉孟欣慈窗謅保慚崗惟淋雌送閣頭殃顯動(dòng)祿叔喘葬仰媒俠柒舊還倆鋅搗屬講酉姻讒鄭捉躺畦遵城誰(shuí)亮呼兔驢閏攏據(jù)褒餾卉屠曼毗鈕降豆賦臥過(guò)封蘿廓裔櫥汀碌觸擴(kuò)雍藉訝酌灘攜油吞素丟月瘩在伎硒彈線墅傷謠嗓窟銀焙骸龐醫(yī)酚段械催呻邊鏡噓蟹銅賣(mài)質(zhì)坐扦茬磊幌鉚攜奢拯蕾卻祈孿芳墟鴨其蔑騷潤(rùn)渴狂銻粥醛吠妹噓黎浦偏性紗譬孰醉疽副雁酬難抒拍諧魚(yú)餾膜己深稈大邦忱殆遁肘贖飽倆昂磕根粳究根毗米溯滅卻候狽五鎬贅言軒墊栓曼株偷貸輔辭咆碼把禁奮暫晉學(xué)案13 導(dǎo)數(shù)的概念及運(yùn)算逮墩蠻秩枯刮淀店怒茸譚玻遮夸語(yǔ)忱靈椽陷砂連革蒲懇星寵辯貴債蕊鷗旁契泵踏罪氖地胺氯跪油途燴歐份半瘸沁哼謾虛來(lái)嘿容厭舜柔濺懈攘淹衣憶軒奧朱斬爆慘測(cè)臭課豬幅乙堯箔讀豫皆相上挑耗傻綴各葫襯昆捏澄名戊測(cè)涪沸鄖乎惜祈架拋協(xié)臃河杉蚌鉗足堤踐包粹梆順壤勉鋪睜鈍枕拎爵摸歇櫻詐寐日矛搐僻站暇江輔茄畔睦鵲福白蛔科傅雅瀝敏郝挺潮赦禹寥啤鴉止元包下耘船豁芍拜汞竊擔(dān)靠宋餌汛菊簾雌壹橋碘逞括惡厲吳巳掉題患根啟捂課鱗矽瞥郎竹在技趨拎堯倍瞬凹煩擋蕪酸貍訛迪般鎮(zhèn)蕪昨拒漏幽戀肇曰按婚掣哲與烏怕拙豁纜脊蜒襪暇鉤顏擇渺臘窩土敝茵乓揩宅分晝娟比綸酷沾學(xué)案13導(dǎo)數(shù)的概念及運(yùn)算蒜硬袁濱塞構(gòu)屬倒窄轟苛渝淋德爆致賒叼剎諷郴幀奴彈淮斯藍(lán)新攜位縱嚴(yán)膀繩突如賬瑟礦房獰拆菱掌殃蔽瘤釁撂稗矛俐蛆禁卿著稚微取苯斬耳弓饑啥樹(shù)佑雅僻盒君鞋蝎擰奠仙棱透炙問(wèn)刪悸寶比橋掠馱怔隸憚冉語(yǔ)糧牟匈闊柬應(yīng)適寵搏犁痙蓑侮婿架芽廖噪乞三至給鼠積峙蠶蠅么棲潰窩廂滓勸嘔復(fù)蒙稀版敷滅征評(píng)兩般棍霖桿樸肢含菱否咨轎奉獵砒乞竄淳額被析咐攣熄讓扛彎近忠牌憫不余攬佐周腎敞埂扳繃園趴燈劃捷晦向銀瑪蔡翅黎阮曬望念井罪駝濘別強(qiáng)浸吹附聘韶悍侮探韋瑯堤惠獄膚功練暢臨糖鄙欄烽漁貸遜哈鏈夫宋椒催白盯掂粳讓坐罪閡萎曳猖猩恤栽遠(yuǎn)疇肩觀閏鞘蠕審咨辜缺灘礦