歡迎來到裝配圖網! | 幫助中心 裝配圖網zhuangpeitu.com!
裝配圖網
ImageVerifierCode 換一換
首頁 裝配圖網 > 資源分類 > DOC文檔下載  

2019版高考數(shù)學一輪復習 第一部分 基礎與考點過關 第五章 數(shù)列學案.doc

  • 資源ID:6358258       資源大?。?span id="psjmdlx" class="font-tahoma">1.40MB        全文頁數(shù):41頁
  • 資源格式: DOC        下載積分:9.9積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

2019版高考數(shù)學一輪復習 第一部分 基礎與考點過關 第五章 數(shù)列學案.doc

第五章數(shù)列第1課時數(shù)列的概念及其簡單表示法理解數(shù)列的概念,認識數(shù)列是反映自然規(guī)律的基本數(shù)學模型,探索并掌握數(shù)列的幾種簡單表示法(列表、圖象、通項公式);了解數(shù)列是一種特殊的函數(shù);發(fā)現(xiàn)數(shù)列規(guī)律,寫出其通項公式 了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項公式). 了解數(shù)列是自變量為正整數(shù)的一類函數(shù). 會利用數(shù)列的前n項和求通項公式1. (必修5P34習題3改編)已知數(shù)列an滿足an4an13,且a10,則a 5_答案:255解析:a24a133,a34a2343315,a44a33415363,a54a434633255.2. (必修5P34習題2改編)數(shù)列1,的一個通項公式是_答案:an(1)n解析:1,數(shù)列1,4,9,16,對應通項n2,數(shù)列1,3,5,7,對應通項2n1,數(shù)列1,1,1,1,對應通項(1)n,故an(1)n.3. (必修5P48習題9改編)若數(shù)列an的前n項和Snn23n,則_答案:2解析: 數(shù)列an的前n項和Snn23n, a1a2a3S3323318,a4a5a6S6S336, 2.4. (必修5P34習題9改編)已知數(shù)列an的通項公式是ann28n5,則這個數(shù)列的最小項是_答案: 11解析:由an(n4)211,可知n4時,an取最小值為11.5. (必修5P34習題5改編)已知數(shù)列,2,則4是這個數(shù)列的第_項答案:11解析:易知該數(shù)列的通項為,則有4,得n11,則4是這個數(shù)列的第11項1. 數(shù)列的定義按照一定順序排列的一列數(shù)稱為數(shù)列數(shù)列中的每一個數(shù)叫做這個數(shù)列的項排在第一位的數(shù)稱為這個數(shù)列的第1項,通常也叫做首項2. 數(shù)列的分類項數(shù)有限的數(shù)列叫做有窮數(shù)列項數(shù)無限的數(shù)列叫做無窮數(shù)列3. 數(shù)列與函數(shù)的關系從函數(shù)觀點看,數(shù)列可以看成是以正整數(shù)或其子集為定義域的函數(shù)anf(n),當自變量按照從小到大的順序依次取值時所對應的一列函數(shù)值反過來,對于函數(shù)yf(x),如果f(i)(i1,2,3,)有意義,那么可以得到一個數(shù)列f(n)4. 數(shù)列的通項公式如果數(shù)列an的第n項與序號n之間的關系可以用一個公式anf(n)(n1,2,3,)來表示,那么這個公式叫做這個數(shù)列的通項公式通項公式可以看成數(shù)列的函數(shù)解析式5. 數(shù)列an的前n項和Sn與通項an的關系是an備課札記,1由數(shù)列的前幾項求數(shù)列的通項),1)根據下面各數(shù)列前幾項的值,寫出數(shù)列的一個通項公式:(1) 1,7,13,19,;(2) ,;(3) 1,0,0,0,0,;(4) 1,2,3,4,.解:(1) 偶數(shù)項為正,奇數(shù)項為負,故通項公式必含有因式(1)n,觀察各項的絕對值,后一項的絕對值總比它前一項的絕對值大6,故數(shù)列的一個通項公式為an(1)n(6n5)(2) 這是一個分數(shù)數(shù)列,其分子構成偶數(shù)數(shù)列,而分母可分解為13,35,57,79,911,每一項都是兩個相鄰奇數(shù)的乘積故所求數(shù)列的一個通項公式為an.(3)將數(shù)列改寫為,則an.(4) 觀察不難發(fā)現(xiàn)11,222,333,一般地,ann.則ann.變式訓練(1) 數(shù)列,的一個通項公式an_;(2) 該數(shù)列,的一個通項公式為_答案:(1) (1)n(2) 解析:(1) 這個數(shù)列前4項的絕對值都等于項數(shù)與項數(shù)加1的積的倒數(shù),且奇數(shù)項為負,偶數(shù)項為正,所以它的一個通項公式為an(1)n.(2) 各項的分子為22,32,42,52,分母比分子大1,因此該數(shù)列的一個通項公式為an.,2由an與Sn關系求an),2)已知數(shù)列an的前n項和Sn,求通項an.(1) Sn3n1;(2) Sn2n1.解:(1) 當n1時,a1S12.當n2時,anSnSn123n1.當n1時,an2符合上式 an23n1.(2) 當n1時,a1S12113;當n2時,anSnSn1(2n1)(2n11)2n2n12n1.當n1時,an3不符合上式綜上有 an變式訓練(1) 已知數(shù)列an的前n項和Sn3n1,則an_;(2) 若數(shù)列an的前n項和Snan,則an的通項公式an_答案:(1) (2) (2)n1解析:(1) 當n1時,a1S1314,當n2時,anSnSn13n13n1123n1. a14不適合上等式, an(2) 由Snan得,當n2時,Sn1an1,兩式相減,得ananan1, 當n2時,an2an1,即2.又n1時,S1a1a1,a11, an(2)n1.,3由數(shù)列的遞推關系求數(shù)列的通項公式),3)(1) 設數(shù)列an中,a12,an1ann1,則通項公式an_;(2) a11,anan1(n2,nN*),通項公式an_;(3) 在數(shù)列an中,a11,前n項和Snan,則an的通項公式為an_答案:(1) 1(2) 2(nN*)(3) 解析:(1) 由題意得,當n2時,ana1(a2a1)(a3a2)(anan1)2(23n)21.又a112,符合上式,因此an1.(2) 由anan1(n2),得anan1(n2)則a2a1,a3a2,anan1.將上述n1個式子累加,得an2.當n1時,a11也滿足,故an2(nN*)(3) 由題設知,a11.當n>1時,anSnSn1anan1, , ,3.以上n1個式子的等號兩端分別相乘,得到. a11, an.(1) 已知數(shù)列an滿足a11,an3n1an1(n2),則an_(2) 已知數(shù)列an滿足a11,anan1(n2),則an_答案:(1) an(2) 解析:(1) 由a11,anan13n1(n2),得a11,a2a131,a3a232,an1an23n2,anan13n1,以上等式兩邊分別相加得an13323n1.當n1時,a11也適合, an.(2) anan1 (n2),an1an2,a2a1.以上(n1)個式子相乘得ana1.當n1時也滿足此等式, an.1. (2017太原模擬)已知數(shù)列an滿足a11,anan1nanan1(nN*),則an_答案:解析:由anan1nanan1得n,則由累加法得12(n1).因為a11,所以1,所以an.2. 設Sn為數(shù)列an的前n項和,Snkn2n,nN*,其中k是常數(shù)若對于任意的mN*,am,a2m,a4m成等比數(shù)列,則k的值為_答案:0或1解析: Snkn2n,nN*, 數(shù)列an是首項為k1,公差為2k的等差數(shù)列,an2kn1k.又對于任意的mN*都有aama4m,aa1a4,(3k1)2(k1)(7k1),解得k0或1.又k0時,an1,顯然對于任意的mN*,am,a2m,a4m成等比數(shù)列;k1時,an2n,am2m,a2m4m,a4m8m,顯然對于任意的mN*,am,a2m,a4m也成等比數(shù)列綜上所述,k0或1.3. 已知數(shù)列an滿足a11,an1an2n(nN*),則a10等于_答案:32解析: an1an2n, an1an22n1,兩式相除得2.又a1a22,a11, a22,則24,即a102532.4. 對于數(shù)列an,定義數(shù)列bn滿足:bnan1an(nN*),且bn1bn1(nN*),a31,a41,則a1_答案:8解析:b3a4a3112,由b3b21,得b23,而b2a3a23,得a24.又b2b11,則b14,而b1a2a14a14,則a18.5. 已知數(shù)列an的前n項和Snan,則an的通項公式an_答案:解析:當n1時,a1S1a1, a11.當n2時,anSnSn1anan1, . 數(shù)列an為首項a11,公比q的等比數(shù)列,故an()n1.1. 若ann2n3(其中為實常數(shù)),nN*,且數(shù)列an為單調遞增數(shù)列,則實數(shù)的取值范圍是_答案:(3,)解析:(解法1:函數(shù)觀點)因為an為單調遞增數(shù)列, 所以an1>an,即(n1)2(n1)3>n2n3,化簡為>2n1對一切nN*都成立,所以>3.故實數(shù)的取值范圍是(3,)(解法2:數(shù)形結合法)因為an為單調遞增數(shù)列,所以a1<a2,要保證a1<a2成立,二次函數(shù)f(x)x2x3的對稱軸x應位于1和2中點的左側,即<,亦即>3,故實數(shù)的取值范圍為(3,)2. 已知數(shù)列an的前n項和為Sn,且a11,an1Sn,求a2,a3,a4的值及數(shù)列an的通項公式解:由已知得a2,a3,a4.由a11,an1Sn,得anSn1,n2,故an1anSnSn1an,n2,得an1an,n2.又a11,a2,故該數(shù)列從第二項開始為等比數(shù)列,故an3. 已知各項均為正數(shù)的數(shù)列an的前n項和為Sn,且Sn滿足S(n2n3)Sn3(n2n)0,nN*.(1) 求a1的值;(2) 求數(shù)列an的通項公式解:(1) 由題設,S(n2n3)Sn3(n2n)0,nN*.令n1,有S(1213)S13(121)0,可得SS160,解得S13或2,即a13或2.又an為正數(shù),所以a12.(2) 由S(n2n3)Sn3(n2n)0,nN*可得,(Sn3)(Snn2n)0,則Snn2n或Sn3.又數(shù)列an的各項均為正數(shù),所以Snn2n,Sn1(n1)2(n1),所以當n2時,anSnSn1n2n(n1)2(n1)2n.又a12,所以an2n.4. 設數(shù)列an的前n項和為Sn.已知a1a(a3),an1Sn3n,nN*.(1) 設bnSn3n,求數(shù)列bn的通項公式;(2) 若an1an,nN*,求a的取值范圍解:(1) 依題意,Sn1Snan1Sn3n,即Sn12Sn3n,由此得Sn13n12(Sn3n),即bn12bn.又b1S13a3,因此,所求通項公式為bn(a3)2n1,nN*.(2) 由(1)知Sn3n(a3)2n1,nN*,于是,當n2時,anSnSn13n(a3)2n13n1(a3)2n223n1(a3)2n2,an1an43n1(a3)2n22n2.當n2時,an1an12a30a9.又a2a13>a1,綜上,所求的a的取值范圍是9,3)(3,)1. 數(shù)列中的數(shù)的有序性是數(shù)列定義的靈魂,要注意辨析數(shù)列的項和數(shù)集中元素的異同,數(shù)列可以看成是一個定義域為正整數(shù)集或其子集的函數(shù),因此在研究數(shù)列問題時,既要注意函數(shù)方法的普遍性,又要注意數(shù)列方法的特殊性2. 根據所給數(shù)列的前幾項求其通項,需要仔細觀察分析,抓住特征:分式中分子、分母的獨立特征,相鄰項變化的特征,拆項后的特征,各項的符號特征和絕對值特征,并由此進行歸納、聯(lián)想3. 通項an與其前n項和Sn的關系是一個十分重要的考點,運用時不要忘記討論an備課札記第2課時等 差 數(shù) 列(對應學生用書(文)、(理)8485頁)理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式與前n項和公式,能在具體的問題情境中用等差數(shù)列的有關知識解決相應的問題 理解等差數(shù)列的概念. 掌握等差數(shù)列的通項公式與前n項和公式. 理解等差中項的概念,掌握等差數(shù)列的性質1. (必修5P47習題5改編)已知等差數(shù)列an的前n項和為Sn,若a12,S312,則a6_答案:12解析:設等差數(shù)列an的公差為d,由題意知,323d12,得d2,則a62(61)212.2. (必修5P48習題7改編)在等差數(shù)列an中,(1) 已知a4a142,則S17_;(2) 已知S1155,則a6_;(3) 已知S8100,S16392,則S24_答案:(1) 17(2) 5(3) 876解析:(1) S1717.(2) S1155, a65.(3) S8,S16S8,S24S16成等差數(shù)列, 100S243922(392100), S24876.3. (必修5P44練習6改編)設Sn為等差數(shù)列an的前n項和,已知S55,S927,則S7_答案:14解析:由S5(a1a5)2a35a35,得a31.由S9(a1a9)2a59a527,得a53.從而S7(a1a7)(a3a5)414.4. (必修5P48習題11改編)已知數(shù)列an為等差數(shù)列,若a13,11a55a8,則使其前n項和Sn取最小值的n_答案:2解析: a13,11a55a8, d2, Snn24n(n2)24, 當n2時,Sn最小5. (必修5P43例2改編)在等差數(shù)列an中,已知d,an,Sn,則a1_答案:3解析:由題意,得由得a1n2,代入得n27n300, n10或n3(舍去), a13.1. 等差數(shù)列的定義(1) 文字語言:如果一個數(shù)列從第二項起,每一項減去它的前一項所得的差都等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列(2) 符號語言:an1and(nN*)2. 等差數(shù)列的通項公式若等差數(shù)列an的首項為a1,公差為d,則其通項公式為ana1(n1)d推廣:anam(nm)d.3. 等差中項如果三個數(shù)a,A,b成等差數(shù)列,則A叫a和b的等差中項,且有A4. 等差數(shù)列的前n項和公式(1) Snna1d(2) Sn5. 等差數(shù)列的性質(1) 等差數(shù)列an中,對任意的m,n,p,qN*,若mnpq,則amanapaq特殊的,若mn2p,則aman2ap(2) 等差數(shù)列an中,依次每m項的和仍成等差數(shù)列,即Sm,S2mSm,S3mS2m,仍成等差數(shù)列6. 當項數(shù)為2n(nN),則S偶S奇nd,;當項數(shù)為2n1(nN),則S奇S偶an,.,1數(shù)列中的基本量的計算),1)(1) 設Sn為等差數(shù)列an的前n項和,S84a3,a72,則a9_;(2) 設等差數(shù)列an的前n項和為Sn,S36,S412,則S6_答案:(1) 6(2) 30解析:(1) 設公差為d,則8a128d4a18d,即a15d,a7a16d5d6dd2,所以a9a72d6.(2) 設數(shù)列an的首項為a1,公差為d,由S36,S412,可得解得即S66a115d30.變式訓練(1) 已知an是公差不為0 的等差數(shù)列,Sn是其前n項和,若a2a3a4a5,S91,則a1的值是_;(2) 設Sn是等差數(shù)列an的前n項和,若a27,S77,則a7的值為_答案:(1) (2) 13解析:(1) 設等差數(shù)列an的公差為d(d0) a2a3a4a5,S91, 解得a1.(2) 設等差數(shù)列an的公差為d. a27,S77, 解方程組可得 a7a16d116413.,2判斷或證明一個數(shù)列是否是等差數(shù)列),2)已知數(shù)列an的各項均為正數(shù),前n項和為Sn,且滿足2Snan4.(1) 求證:an為等差數(shù)列;(2) 求an的通項公式(1) 證明:當n1時,有2a1a14,即a2a130,解得a13或a11(舍去)當n2時,有2Sn1an5.又2Snan4,兩式相減得2anaa1,即a2an1a,也即(an1)2a,因此an1an1或an1an1.若an1an1,則anan11,而a13,所以a22,這與數(shù)列an的各項均為正數(shù)相矛盾,所以an1an1,即anan11,因此an為等差數(shù)列(2) 解:由(1)知a13,d1,所以數(shù)列an的通項公式an3(n1)1n2,即ann2.變式訓練已知數(shù)列an滿足:a12,an13an3n12n.設bn.(1) 證明:數(shù)列bn為等差數(shù)列;(2) 求數(shù)列an的通項公式(1) 證明: bn1bn1, 數(shù)列bn為等差數(shù)列(2) 解: b10, bnn1, an(n1)3n2n.已知數(shù)列an的前n項和為Sn,且滿足:an2SnSn10(n2,nN*),a1,判斷與an是否為等差數(shù)列,并說明你的理由解:因為anSnSn1(n2),又an2SnSn10,所以SnSn12SnSn10(n2),所以2(n2)因為S1a1,所以是以2為首項,2為公差的等差數(shù)列所以2(n1)22n,故Sn.所以當n2時,anSnSn1,所以an1,而an1an.所以當n2時,an1an的值不是一個與n無關的常數(shù),故數(shù)列an不是一個等差數(shù)列綜上可知,是等差數(shù)列,an不是等差數(shù)列,3等差數(shù)列的性質),3)(1) 已知an是等差數(shù)列,Sn是其前n項和若a1a3,S510,則a9的值是_;(2) 在等差數(shù)列an中,若a3a4a5a6a725,則a2a8_;(3) 已知等差數(shù)列an的前n項和為Sn,且S1010,S2030,則S30_答案:(1) 20(2) 10(3) 60解析:(1) 由S510得a32,因此22d(2d)23d3,a923620.(2) 因為an是等差數(shù)列,所以a3a7a4a6a2a82a5,a3a4a5a6a75a525,即a55,a2a82a510.(3) 因為S10,S20S10,S30S20成等差數(shù)列,且S1010,S2030,S20S1020,所以22010S3030,所以S3060.變式訓練(1) 設等差數(shù)列an的前n項和為Sn.若2a86a11,則S9的值等于_;(2) 設等差數(shù)列an的前n項和為Sn.若S39,S636,則a7a8a9_答案:(1) 54(2) 45解析:(1) 根據題意及等差數(shù)列的性質,知2a8a11a56,根據等差數(shù)列的求和公式,知S9996954.(2) 由an是等差數(shù)列,得S3,S6S3,S9S6為等差數(shù)列即2(S6S3)S3(S9S6),得到S9S62S63S345,則a7a8a945.設等差數(shù)列an的前n項和為Sn,若a53,S1040,求nSn的最小值解:設等差數(shù)列an的公差為d. a53,S1040, a14d3,10a1d40,解得a15,d2. Sn5n2n26n,則nSnn2(n6)n5時,nSn0;n6時,nSn0.可得n4時,nSn取得最小值32.,4等差數(shù)列中的最值問題),4)(1) 若等差數(shù)列an滿足a7a8a9>0,a7a10<0,當n取何值時,an的前n項和最大?(2) 已知數(shù)列an為等差數(shù)列若<1,且an的前n項和Sn有最大值,求使Sn>0時n的最大值(3) 在等差數(shù)列an中,a1>0,公差d<0,a53a7,其前n項和為Sn,求Sn取得最大值時n的值解:(1) 由等差數(shù)列的性質,得a7a8a93a8,a8>0.又a7a10<0, a8a9<0, a9<0, S8>S7,S8>S9,故數(shù)列an的前8項和最大(2) <1,且Sn有最大值, a6>0,a7<0,且a6a7<0, S1111a6>0,S126(a6a7)<0, 使Sn>0的n的最大值為11.(3) 在等差數(shù)列an中,a1>0,公差d<0. a53a7, a14d3(a16d), a17d, Snn(7d)d(n215n), n7或8時,Sn取得最大值已知在等差數(shù)列an中,a131,Sn是它的前n項和,S10S22.(1) 求Sn;(2) 這個數(shù)列的前多少項的和最大,并求出這個最大值解:(1) S10a1a2a10,S22a1a2a22,S10S22, a11a12a220,0,即a11a222a131d0.又a131, d2, Snna1d31nn(n1)32nn2.(2) (解法1)由(1)知Sn32nn2, 當n16時,Sn有最大值,Sn的最大值是256.(解法2)由Sn32nn2n(32n),欲使Sn有最大值,應有1<n<32,從而Sn256,當且僅當n32n,即n16時,Sn有最大值256.1. (2016北京卷)已知an為等差數(shù)列,Sn為其前n項和若a16,a3a50,則S6_答案:6解析:設等差數(shù)列an的公差為d.因為a3a50,所以62d64d0,解得d2,所以S666(2)36306.2. (2017南京、鹽城一模)已知數(shù)列an是等差數(shù)列,Sn是其前n項和若a4a5a621,則S9_答案:63解析:由a4a5a621得a57,所以S99a563.3. 已知公差為d的等差數(shù)列an的前n項和為Sn.若3,則的值為_答案:解析:3,則d4a1,則.4. (2017南通、泰州三調)設等差數(shù)列an的前n項和為Sn.若公差d2,a510,則S10的值是_答案:110解析: a5a14da1810, a12, S1010a1d110.5. (2017南通一模)九章算術中的“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則該竹子最上面一節(jié)的容積為_升答案:解析:設最上面一節(jié)的容積為a1,由題設知解得a1.1. (2017新課標)等差數(shù)列an的前n項和為Sn,a33,S410,則_答案:解析:設等差數(shù)列的首項為a1,公差為d,由題意有解得數(shù)列的前n項和Snna1dn11.裂項有:2,據此,2. 設Sn是數(shù)列an的前n項和,且a11,an1SnSn1,則an_答案:an解析:由已知得an1Sn1SnSn1Sn,兩邊同時除以Sn1Sn,得1,故數(shù)列是以1為首項,1為公差的等差數(shù)列,則1(n1)n,所以Sn.則當n1時,a11;當n2時,anSnSn1,所以an(或直接帶入an1SnSn1,但要注意分類討論)3. 已知等差數(shù)列an的首項為1,公差為2,若a1a2a2a3a3a4a4a5a2na2n1tn2對nN*恒成立,則實數(shù)t的取值范圍是_答案:(,12解析:a1a2a2a3a3a4a4a5a2na2n1a2(a1a3)a4(a3a5)a2n(a2n1a2n1)4(a2a4a2n)4n8n24n,所以8n24ntn2,所以t8對nN*恒成立,t12.4. (2017南京、鹽城二模)已知數(shù)列an的前n項和為Sn,數(shù)列bn,cn滿足(n1)bnan1,(n2)cn,其中nN*.(1) 若數(shù)列an是公差為2的等差數(shù)列,求數(shù)列cn的通項公式;(2) 若存在實數(shù),使得對一切nN*,有bncn,求證:數(shù)列an是等差數(shù)列(1) 解: 數(shù)列an是公差為2的等差數(shù)列, ana12(n1),a1n1. (n2)cn(a1n1)n2,解得cn1.(2) 證明:由(n1)bnan1,可得n(n1)bnnan1Sn,(n1)(n2)bn1(n1)an2Sn1,兩式相減可得an2an1(n2)bn1nbn,可得(n2)cnan1(n1)bn(n1)bn(n1)bn(bnbn1),因此cn(bnbn1) bncn, cn(bnbn1),故bn,cn. (n1)an1,(n2)(an1an2),相減可得(an2an1),即an2an12(n2)又2a2a2a1,則an1an2(n1), 數(shù)列an是等差數(shù)列1. 等差數(shù)列問題,首先應抓住a1和d,通過列方程組來解,其他也就迎刃而解了但若恰當?shù)剡\用性質,可以減少運算量2. 等差數(shù)列的判定方法有以下幾種: 定義法:an1and(d為常數(shù)); 等差中項法:2an1anan2; 通項公式法:anpnq(p,q為常數(shù));前n項和公式法:SnAn2Bn(A,B為常數(shù))3. 注意設元,利用對稱性,減少運算量4. 解答某些數(shù)列問題,有時不必(有時也不可能)求出某些具體量的結果,可采用整體代換的思想備課札記第3課時等 比 數(shù) 列(對應學生用書(文)、(理)8687頁)理解等比數(shù)列的概念,掌握等比數(shù)列的通項公式與前n項和公式,并能用有關知識解決相應的問題 理解等比數(shù)列的概念. 掌握等比數(shù)列的通項公式與前n項和公式. 理解等比中項的概念,掌握等比數(shù)列的性質1. (必修5P61習題2改編)設Sn是等比數(shù)列an的前n項和,若a11,a632,則S3_答案:7解析:q532,q2,S37.2. 若1,x,y,z,3成等比數(shù)列,則y的值為_答案:解析:由等比中項知y23, y.又 y與1,3符號相同, y.3. (必修5P54習題10改編)等比數(shù)列an中,a1>0,a2a42a3a5a4a636,則a3a5_答案:6解析:a2a42a3a5a4a6(a3a5)236.又a1>0, a3,a5>0, a3a56.4. (必修5P61習題3改編)在等比數(shù)列an中,a37,前3項和S321,則公比q_答案:1或解析:由已知得 化簡得3.整理得2q2q10,解得q1或q.5. (必修5P56例2改編)設等比數(shù)列an的前n項和為Sn.若S23,S415,則S6_答案:63解析:設等比數(shù)列an的首項為a1,公比為q,易知q1,根據題意可得解得q24,1,所以S6(1)(143)63. 1. 等比數(shù)列的概念(1) 文字語言:如果一個數(shù)列從第二項起,每一項與它的前一項的比都等于同一個常數(shù),那么這個數(shù)列叫做等比數(shù)列(2) 符號語言:q(nN*,q是等比數(shù)列的公比)2. 等比數(shù)列的通項公式設an是首項為a1,公比為q的等比數(shù)列,則第n項ana1qn1推廣:anamqnm.3. 等比中項若a,G,b成等比數(shù)列,則G為a和b的等比中項且G4. 等比數(shù)列的前n項和公式(1) 當q1時,Snna1(2) 當q1時,Sn5. 等比數(shù)列的性質(1) 等比數(shù)列an中,對任意的m,n,p,qN*,若mnpq,則amanapaq特殊的,若mn2p,則amana(2) 等比數(shù)列an中,依次每m項的和(非零)仍成等比數(shù)列,即Sm,S2mSm,S3mS2m,仍成等比數(shù)列,其公比為qm(q1)(其中Sm0)備課札記,1等比數(shù)列的基本運算),1)(1) 設等比數(shù)列an滿足a1a21,a1a33,則a4_;(2) 等比數(shù)列an的各項均為實數(shù),其前n項和為Sn,已知S3,S6,則a8_;(3) 設等比數(shù)列an的前n項和為Sn.若27a3a60,則_答案:(1) 8(2) 32(3) 28解析:(1) 設等比數(shù)列的公比為q,很明顯q1,結合等比數(shù)列的通項公式和題意可得方程組由除以可得q2 ,代入可得a11,由等比數(shù)列的通項公式可得a4a1q38.(2) 當q1時,顯然不符合題意;當q1時,解得則a82732.(3) 設等比數(shù)列的公比為q,首項為a1,則q327.111q328.變式訓練(1) 在各項均為正數(shù)的等比數(shù)列an中,若a21,a8a62a4,則a6的值是_;(2) 設等比數(shù)列an滿足a1a310,a2a45,則a1a2a3an的最大值為_答案:(1) 4(2) 64解析:(1) 設等比數(shù)列an的公比為q,由a21,a8a62a4得q6q42q2,q4q220,解得q22,則a6a2q44.(2) 因為a1a310,a2a45,所以公比q,所以a1a110a18,a1a2a3an8n12n123n223n2,所以當n3或4時,取最大值64.,2等比數(shù)列的判定與證明),2)已知數(shù)列an的前n項和為Sn,3Snan1(nN*)(1) 求a1,a2;(2) 求證:數(shù)列an是等比數(shù)列;(3) 求an和Sn.(1) 解:由3S1a11,得3a1a11,所以a1.又3S2a21,即3a13a2a21,得a2.(2) 證明:當n2時,anSnSn1(an1)(an11),得,所以an是首項為,公比為的等比數(shù)列(3) 解:由(2)可得ann,Sn.已知數(shù)列an的前n項和為Sn,且Sn4an3(nN*)(1) 求證:數(shù)列an是等比數(shù)列;(2) 若數(shù)列bn滿足bn1anbn(nN*),且b12,求數(shù)列bn的通項公式(1) 證明:依題意Sn4an3(nN*),當n1時,a14a13,解得a11.因為Sn4an3,則Sn14an13(n2),所以當n2時,anSnSn14an4an1,整理得anan1.又a110,所以an是首項為1,公比為的等比數(shù)列(2) 解:由(1)知an,由bn1anbn(nN*),得bn1bn.可得bnb1(b2b1)(b3b2)(bnbn1)231(n2)當n1時也滿足,所以數(shù)列bn的通項公式為bn31(nN*),3等比數(shù)列的性質),3)已知等比數(shù)列an的各項均為正數(shù),且滿足a1a94,則數(shù)列l(wèi)og2an的前9項之和為_答案:9解析: a1a9a4, a52, log2a1log2a2log2a9log2(a1a2a9)log2a9log2a59.變式訓練(1) 各項均為正數(shù)的等比數(shù)列an的前n項和為Sn,若S102,S3014,則S40_;(2) 等比數(shù)列am的前n項積為Tn(nN*),已知am1am12am0,且T2m1128,則m_答案:(1) 30(2) 4解析:(1) 依題意有S10,S20S10,S30S20,S40S30仍成等比數(shù)列,2(14S20)(S202)2,得S206.所以S10,S20S10,S30S20,S40S30,即為2,4,8,16,所以S40S301630.(2) 因為am為等比數(shù)列,所以am1am1a.又由am1am12am0,得am2.則T2m1a,所以22m1128,m4.,4等比數(shù)列的應用),4)設數(shù)列an的前n項和為Sn,已知a11,Sn14an2.(1) 設bnan12an,求證:數(shù)列bn是等比數(shù)列;(2) 求數(shù)列an的通項公式(1) 證明: 由a11及Sn14an2,得a1a2S24a12. a25, b1a22a13.又,得an14an4an1, an12an2(an2an1) bnan12an, bn2bn1,故bn是首項b13,公比為2的等比數(shù)列(2) 解:由(1)知bnan12an32n1, .故是首項為,公差為的等差數(shù)列 (n1),故an(3n1)2n2.已知數(shù)列an的前n項和Sn2n22n,數(shù)列bn的前n項和Tn2bn.(1) 求數(shù)列an與bn的通項公式;(2) 設cnabn,證明:當且僅當n3時,cn1<cn.(1) 解:a1S14,當n2時,anSnSn12n(n1)2(n1)n4n.又a14適合上式, an4n(nN*)將n1代入Tn2bn,得b12b1, T1b11.當n2時,Tn12bn1,Tn2bn, bnTnTn1bn1bn, bnbn1, bn21n.(2) 證明:(證法1)由cnabnn225n,得.當且僅當n3時,1<,即cn1<cn.(證法2)由cnabnn225n,得cn1cn24n(n1)22n224n(n1)22當且僅當n3時,cn1cn<0,即cn1<cn.1. (2017南京、鹽城二模)記公比為正數(shù)的等比數(shù)列an的前n項和為Sn.若a11,S45S20,則S5的值為_答案:31解析:若等比數(shù)列的公比等于1,由a11,得S44,5S210,與題意不符設等比數(shù)列的公比為q(q1),由a11,S45S2,得5a1(1q),解得q2. 數(shù)列an的各項均為正數(shù), q2.則S531.2. (2017蘇北四市三模)在公比為q,且各項均為正數(shù)的等比數(shù)列an中,Sn為an的前n項和若a1,且S5S22,則q的值為_答案:解析:由題意可知q1,又S5S22,即2, q32q10, (q1)(q2q1)0.又q>0,且q1, q.3. (2017蘇錫常鎮(zhèn)二模)已知等比數(shù)列an的前n項和為Sn,公比q3,S3S4,則a3_答案:3解析: 等比數(shù)列an的前n項和為Sn,公比q3,S3S4, ,解得a1.則a3323.4. (2017南通四模)已知數(shù)列an中,a11,a24,a310.若an1an是等比數(shù)列,則i_答案:32n2n3解析:a2a1413,a3a21046, an1an是等比數(shù)列, 首項為3,公比為2, an1an32n1, ana1(a2a1)(a3a2)(anan1)133232n21332n12.則i32n32n2n3.1. (2017新課標)幾位大學生響應國家的創(chuàng)業(yè)號召,開發(fā)了一款應用軟件為激發(fā)大家學習數(shù)學的興趣,他們推出了“解數(shù)學題獲取軟件激活碼”的活動這款軟件的激活碼為下面數(shù)學問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,其中第一項是20,接下來的兩項是20,21,再接下來的三項是20,21,22,依此類推求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項和為2的整數(shù)冪那么該款軟件的激活碼是_答案:440解析:由題意得,數(shù)列如下:1,1,2,1,2,4,1,2,4,2k1,則該數(shù)列的前12k項和為S1(12)(122k1)2k1k2,要使100,有k14,此時k22k1,所以k2是之后的等比數(shù)列1,2,2k1的部分和,即k2122t12t1,所以k2t314,則t5,此時k25329,對應滿足的最小條件為N5440.2. 已知數(shù)列an滿足a11,an1,其中nN*,為非零常數(shù)(1) 若3,8,求證:an1為等比數(shù)列,并求數(shù)列an的通項公式;(2) 若數(shù)列an是公差不等于零的等差數(shù)列,求實數(shù),的值(1) 證明:當3,8時,an13an2,化為an113(an1), an1為等比數(shù)列,首項為2,公比為3. an123n1,可得an23n11.(2) 解:設ana1(n1)ddnd1.由an1,可得an1(an2)aan4, (dnd3)(dn1)(dnd1)2(dnd1)4.令n1,2,3,解得1,4,d2.經過檢驗滿足題意, 1,4.3. 已知各項不為零的數(shù)列an的前n項和為Sn,且a11,Snpanan1(nN*),pR.(1) 若a1,a2,a3成等比數(shù)列,求實數(shù)p的值;(2) 若a1,a2,a3成等差數(shù)列,求數(shù)列an的通項公式解:(1) 當n1時,a1pa1a2,a2;當n2時,a1a2pa2a3,a31.由aa1a3得a1a3,即p2p10,解得p.(2) 由2a2a1a3得p,故a22,a33,所以Snanan1,當n2時,anSnSn1anan1an1an.因為an0,所以an1an12,故數(shù)列an的所有奇數(shù)項組成以1為首項2為公差的等差數(shù)列,其通項公式是an12n.同理,數(shù)列an的所有偶數(shù)項組成以2為首項2為公差的等差數(shù)列,其通項公式是an22n,所以數(shù)列an的通項公式是ann.4. 已知數(shù)列an的首項a12a1(a是常數(shù),且a1),an2an1n24n2(n2),數(shù)列bn的首項b1a,bnann2(n2)(1) 求證:bn從第2項起是以2為公比的等比數(shù)列;(2) 設Sn為數(shù)列bn的前n項和,且Sn是等比數(shù)列,求實數(shù)a的值;(3) 當a>0時,求數(shù)列an的最小項(1) 證明: bnann2, bn1an1(n1)22an(n1)24(n1)2(n1)22an2n22bn(n2)由a12a1,得a24a,b2a244a4. a1, b20,即bn從第2項起是以2為公比的等比數(shù)列(2) 解:由(1)知bnSna3a4(2a2)2n,當n2時,2. Sn是等比數(shù)列, (n2)是常數(shù), 3a40,即a.(3) 解:由(1)知當n2時,bn(4a4)2n2(a1)2n, an 數(shù)列an為2a1,4a,8a1,16a,32a7,顯然最小項是前三項中的一項當a時,最小項為8a1;當a時,最小項為4a或8a1;當a時,最小項為4a;當a時,最小項為4a或2a1;當a時,最小項為2a1.1. 重點是本著化多為少的原則,解題時,需抓住首項a1和公比q這兩個基本量2. 運用等比數(shù)列求和公式時,要對q1和q1進行討論3. 解決等比數(shù)列有關問題的常見思想方法:方程的思想:等比數(shù)列中有五個量a1,q,n,an,Sn,一般可以“知三求二”,通過列方程組求關鍵量a1,q.分類的思想:當a1>0,q>1或者a1<0,0<q<1時,等比數(shù)列an遞增;當a1>0,0<q<1或者a1<0,q>1時,等比數(shù)列an遞減;當q<0時,等比數(shù)列為擺動數(shù)列;當q1時,等比數(shù)列為常數(shù)列函數(shù)的思想:用函數(shù)的觀點來理解和掌握等比數(shù)列的概念、通項公式和前n項和公式4. 巧用性質,減少運算量,在解題中非常重要第4課時數(shù)列的求和(對應學生用書(文)、(理)8889頁)理解數(shù)列的通項公式;會由數(shù)列的前n項和求數(shù)列通項公式;掌握等差數(shù)列、等比數(shù)列前n項和的公式;數(shù)列求和的常用方法:分組求和法、錯位相減法、裂項相消法、倒序相加法等 掌握求數(shù)列通項公式的常用方法. 掌握數(shù)列求和的常用方法1. (必修5P36例2改編)在數(shù)列1,1,2,3,5,8,x,21,34,55中,x_答案:13解析:由an2an1an,得x5813.2. (必修5P68復習題13(1)改編)求和:_答案:1解析:原式1.3. (必修5P69本章測試12改編)等比數(shù)列1,2,4,8,中從第5項到第10項的和為_答案:1 008解析:由a11,a22,得q2, S101 023,S415, S10S41 008.4. (必修5P68復習題13(2)改編)已知數(shù)列an的通項公式an,則該數(shù)列的前_項之和等于9.答案:99解析:由題意知,an,所以Sn(1)()()19,解得n99.5. (必修5P62習題12改編)數(shù)列an中,an(2n1)3n1,則數(shù)列an的前n項和Sn_

注意事項

本文(2019版高考數(shù)學一輪復習 第一部分 基礎與考點過關 第五章 數(shù)列學案.doc)為本站會員(tian****1990)主動上傳,裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。 若此文所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網速或其他原因下載失敗請重新下載,重復下載不扣分。




關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!