2018高中數(shù)學(xué) 第2章 推理與證明章末復(fù)習(xí)提升課件 蘇教版選修1 -2.ppt
-
資源ID:5659332
資源大?。?span id="y9svcbl" class="font-tahoma">732.50KB
全文頁(yè)數(shù):31頁(yè)
- 資源格式: PPT
下載積分:9.9積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請(qǐng)知曉。
|
2018高中數(shù)學(xué) 第2章 推理與證明章末復(fù)習(xí)提升課件 蘇教版選修1 -2.ppt
第2章 推理與證明 1 知識(shí)網(wǎng)絡(luò)系統(tǒng)盤點(diǎn) 提煉主干 2 要點(diǎn)歸納整合要點(diǎn) 詮釋疑點(diǎn) 3 題型研修突破重點(diǎn) 提升能力 章末復(fù)習(xí)提升 1 歸納和類比都是合情推理 前者是由特殊到一般 部分到整體的推理 后者是由特殊到特殊的推理 但二者都能由已知推測(cè)未知 都能用于猜想 推理的結(jié)論不一定為真 有待進(jìn)一步證明 2 演繹推理與合情推理不同 是由一般到特殊的推理 是數(shù)學(xué)中證明的基本推理形式 也是公理化體系所采用的推理形式 另一方面 合情推理與演繹推理又是相輔相成的 前者是后者的前提 后者論證前者的可靠性 3 直接證明和間接證明是數(shù)學(xué)證明的兩類基本證明方法 直接證明的兩類基本方法是綜合法和分析法 綜合法是從已知條件推導(dǎo)出結(jié)論的證明方法 分析法是由結(jié)論追溯到條件的證明方法 在解決數(shù)學(xué)問題時(shí) 常把它們結(jié)合起來使用 間接證法的一種方法是反證法 反證法是從結(jié)論反面成立出發(fā) 推出矛盾的證明方法 題型一歸納推理和類比推理歸納推理和類比推理是常用的合情推理 兩種推理的結(jié)論 合情 但不一定 合理 其正確性都有待嚴(yán)格證明 盡管如此 合情推理在探索新知識(shí)方面有著極其重要的作用 運(yùn)用合情推理時(shí) 要認(rèn)識(shí)到觀察 歸納 類比 猜想 證明 是相互聯(lián)系的 在解決問題時(shí) 可以先從觀察入手 發(fā)現(xiàn)問題的特點(diǎn) 形成解決問題的初步思路 然后用歸納 類比的方法進(jìn)行探索 猜想 最后用邏輯推理方法進(jìn)行驗(yàn)證 例1觀察下列各式 a b 1 a2 b2 3 a3 b3 4 a4 b4 7 a5 b5 11 則a10 b10 解析記an bn f n 則f 3 f 1 f 2 1 3 4 f 4 f 2 f 3 3 4 7 f 5 f 3 f 4 11 通過觀察不難發(fā)現(xiàn)f n f n 1 f n 2 n N n 3 則f 6 f 4 f 5 18 f 7 f 5 f 6 29 f 8 f 6 f 7 47 f 9 f 7 f 8 76 f 10 f 8 f 9 123 所以a10 b10 123 答案123 跟蹤演練1給出下列三個(gè)類比結(jié)論 ab n anbn與 a b n類比 則有 a b n an bn loga xy logax logay與sin 類比 則有sin sin sin a b 2 a2 2ab b2與 a b 2類比 則有 a b 2 a2 2a b b2 其中正確結(jié)論的個(gè)數(shù)是 解析 a b n an bn n 1 a b 0 故 錯(cuò)誤 sin sin sin 不恒成立 如 30 60 sin90 1 sin30 sin60 故 錯(cuò)誤 由向量的運(yùn)算公式知 正確 答案1 題型二直接證明綜合法和分析法是直接證明中最基本的兩種證明方法 也是解決數(shù)學(xué)問題常用的思維方式 如果從解題的切入點(diǎn)的角度細(xì)分 直接證明方法可具體分為 比較法 代換法 放縮法 判別式法 構(gòu)造函數(shù)法等 應(yīng)用綜合法證明問題時(shí) 必須首先想到從哪里開始起步 分析法就可以幫助我們克服這種困難 在實(shí)際證明問題時(shí) 應(yīng)當(dāng)把分析法和綜合法結(jié)合起來使用 a 0 而上述不等式顯然成立 故原不等式成立 跟蹤演練2如圖 在四面體B ACD中 CB CD AD BD 且E F分別是AB BD的中點(diǎn) 求證 1 直線EF 平面ACD 證明要證直線EF 平面ACD 只需證EF AD且EF 平面ACD 因?yàn)镋 F分別是AB BD的中點(diǎn) 所以EF是 ABD的中位線 所以EF AD 所以直線EF 平面ACD 2 平面EFC 平面BCD 證明要證平面EFC 平面BCD 只需證BD 平面EFC 只需證 因?yàn)樗訣F BD 又因?yàn)镃B CD F為BD的中點(diǎn) 所以CF BD 所以平面EFC 平面BCD 題型三反證法如果一個(gè)命題的結(jié)論難以直接證明時(shí) 可以考慮反證法 通過反設(shè)結(jié)論 經(jīng)過邏輯推理 得出矛盾 從而肯定原結(jié)論成立 反證法是高中數(shù)學(xué)的一種重要的證明方法 在不等式和立體幾何的證明中經(jīng)常用到 在高考題中也經(jīng)常體現(xiàn) 它所反映出的 正難則反 的解決問題的思想方法更為重要 反證法主要證明 否定性 惟一性命題 至多 至少型問題 幾何問題 例3已知二次函數(shù)f x ax2 bx c a 0 的圖象與x軸有兩個(gè)不同的交點(diǎn) 若f c 0 且00 1 證明 是函數(shù)f x 的一個(gè)零點(diǎn) 證明 f x 圖象與x軸有兩個(gè)不同的交點(diǎn) f x 0有兩個(gè)不等實(shí)根x1 x2 f c 0 x1 c是f x 0的根 由00 跟蹤演練3若a b c均為實(shí)數(shù) 且a x2 2y b y2 2z c z2 2x 求證 a b c中至少有一個(gè)大于0 求證 a b c中至少有一個(gè)大于0 證明假設(shè)a b c都不大于0 即a 0 b 0 c 0 則a b c 0 而a b c x2 2y y2 2z z2 2x x 1 2 y 1 2 z 1 2 3 3 0 且 x 1 2 y 1 2 z 1 2 0 a b c 0 這與a b c 0矛盾 因此假設(shè)不成立 a b c中至少有一個(gè)大于0 課堂小結(jié)1 合情推理主要包括歸納推理和類比推理 1 歸納推理的基本模式 a b c M且a b c具有某屬性 結(jié)論 d M d也具有某屬性 2 類比推理的基本模式 A具有屬性a b c d B具有屬性a b c 結(jié)論 B具有屬性d a b c d與a b c d 相似或相同 2 使用反證法證明問題時(shí) 常見的 結(jié)論詞 與 反設(shè)詞 列表如下