福建省長泰一中高中數(shù)學(xué) 3.2.2《導(dǎo)數(shù)運(yùn)算法則》課件 新人教A版選修11
新人教版選修1-1全套課件3.2.2導(dǎo)數(shù)運(yùn)算法則教學(xué)目標(biāo)教學(xué)目標(biāo)熟練運(yùn)用導(dǎo)數(shù)的四則運(yùn)算法則,并能靈活運(yùn)用教學(xué)重點(diǎn)教學(xué)重點(diǎn):熟練運(yùn)用導(dǎo)數(shù)的四則運(yùn)算法則教學(xué)難點(diǎn)教學(xué)難點(diǎn):商的導(dǎo)數(shù)的運(yùn)用我們今后可以直接使用的基本初等函數(shù)的我們今后可以直接使用的基本初等函數(shù)的導(dǎo)數(shù)公式導(dǎo)數(shù)公式11.( ),( )0;2.( ),( );3.( )sin,( )cos;4.( )cos,( )sin;5.( ),( )ln(0);6.( ),( );17.( )log,( )(0,1);ln8.nnxxxxafxcfxfxxfxnxfxxfxxfxxfxxfxafxaa afxefxefxxfxaaxa 公式若則公式若則公式若則公式若則公式若則公式若則公式若則且公式若1( )ln,( );fxxfxx則導(dǎo)數(shù)的運(yùn)算法則:法則法則1:兩個(gè)函數(shù)的和兩個(gè)函數(shù)的和(差差)的導(dǎo)數(shù)的導(dǎo)數(shù),等于這兩個(gè)函數(shù)的導(dǎo)數(shù)的等于這兩個(gè)函數(shù)的導(dǎo)數(shù)的和和(差差),即即:( )( )( )( )f xg xf xg x法則法則2:兩個(gè)函數(shù)的積的導(dǎo)數(shù)兩個(gè)函數(shù)的積的導(dǎo)數(shù),等于第一個(gè)函數(shù)的導(dǎo)數(shù)乘第二個(gè)等于第一個(gè)函數(shù)的導(dǎo)數(shù)乘第二個(gè)函數(shù)函數(shù),加上第一個(gè)函數(shù)乘第二個(gè)函數(shù)的導(dǎo)數(shù)加上第一個(gè)函數(shù)乘第二個(gè)函數(shù)的導(dǎo)數(shù) ,即即:( )( )( ) ( )( )( )f x g xfx g xf x g x法則法則3:兩個(gè)函數(shù)的積的導(dǎo)數(shù)兩個(gè)函數(shù)的積的導(dǎo)數(shù),等于第一個(gè)函數(shù)的導(dǎo)數(shù)乘第二個(gè)等于第一個(gè)函數(shù)的導(dǎo)數(shù)乘第二個(gè)函數(shù)函數(shù),減去第一個(gè)函數(shù)乘第二個(gè)函數(shù)的導(dǎo)數(shù)減去第一個(gè)函數(shù)乘第二個(gè)函數(shù)的導(dǎo)數(shù) ,再除以第二個(gè)函再除以第二個(gè)函數(shù)的平方數(shù)的平方.即即:2( )( ) ( )( )( )( ( )0)( )( )f xfx g xf x g xg xg xg x例例2.求函數(shù)求函數(shù)y=x3-2x+3的導(dǎo)數(shù)的導(dǎo)數(shù).l練習(xí): P92 1、24:1(5).;(6).yyxxx2題再加兩題例例4:求下列函數(shù)的導(dǎo)數(shù)求下列函數(shù)的導(dǎo)數(shù):222212(1);(2);1(3)tan;(4)(23) 1;yxxxyxyxyxx答案答案:;41) 1 (32xxy ;)1 (1)2(222xxy ;cos1)3(2xy ;16)4(23xxxy 例例5.某運(yùn)動(dòng)物體自始點(diǎn)起經(jīng)過某運(yùn)動(dòng)物體自始點(diǎn)起經(jīng)過t秒后的距離秒后的距離s滿足滿足s= -4t3+16t2. (1)此物體什么時(shí)刻在始點(diǎn)此物體什么時(shí)刻在始點(diǎn)? (2)什么時(shí)刻它的速度為零什么時(shí)刻它的速度為零?441t解解:(1)令令s=0,即即1/4t4-4t3+16t2=0,所以所以t2(t-8)2=0,解得解得: t1=0,t2=8.故在故在t=0或或t=8秒末的時(shí)刻運(yùn)動(dòng)物體在秒末的時(shí)刻運(yùn)動(dòng)物體在 始點(diǎn)始點(diǎn).(2) 即即t3-12t2+32t=0, 解得解得:t1=0,t2=4,t3=8, 0)(,3212)(23 tstttts令令故在故在t=0,t=4和和t=8秒時(shí)物體運(yùn)動(dòng)的速度為零秒時(shí)物體運(yùn)動(dòng)的速度為零.例例6.已知曲線已知曲線S1:y=x2與與S2:y=-(x-2)2,若直線若直線l與與S1,S2均均 相切相切,求求l的方程的方程.解解:設(shè)設(shè)l與與S1相切于相切于P(x1,x12),l與與S2相切于相切于Q(x2,-(x2-2)2).對(duì)于對(duì)于 則與則與S1相切于相切于P點(diǎn)的切線方程為點(diǎn)的切線方程為y-x12=2x1(x-x1),即即y=2x1x-x12.,2,1xyS 對(duì)于對(duì)于 與與S2相切于相切于Q點(diǎn)的切線方程為點(diǎn)的切線方程為y+(x2-2)2=-2(x2-2)(x-x2),即即y=-2(x2-2)x+x22-4.),2( 2,2 xyS因?yàn)閮汕芯€重合因?yàn)閮汕芯€重合,.02204) 2( 222121222121 xxxxxxxx或或若若x1=0,x2=2,則則l為為y=0;若若x1=2,x2=0,則則l為為y=4x-4.所以所求所以所求l的方程為的方程為:y=0或或y=4x-4. 作業(yè)作業(yè):作業(yè): P93 2、3、4、5