2019-2020年高考數(shù)學(xué) 6年高考母題精解精析 專題10 圓錐曲線08 理 .doc
-
資源ID:5491061
資源大?。?span id="eaifivd" class="font-tahoma">658.50KB
全文頁數(shù):10頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。
|
2019-2020年高考數(shù)學(xué) 6年高考母題精解精析 專題10 圓錐曲線08 理 .doc
2019-2020年高考數(shù)學(xué) 6年高考母題精解精析 專題10 圓錐曲線08 理(xx全國卷2理數(shù))(21)(本小題滿分12分) 己知斜率為1的直線l與雙曲線C:相交于B、D兩點(diǎn),且BD的中點(diǎn)為 ()求C的離心率; ()設(shè)C的右頂點(diǎn)為A,右焦點(diǎn)為F,證明:過A、B、D三點(diǎn)的圓與x軸相切 【參考答案】【點(diǎn)評】高考中的解析幾何問題一般為綜合性較強(qiáng)的題目,將好多考點(diǎn)以圓錐曲線為背景來考查,如向量問題、三角形問題、函數(shù)問題等等,試題的難度相對比較穩(wěn)定.(xx遼寧理數(shù))(20)(本小題滿分12分)設(shè)橢圓C:的左焦點(diǎn)為F,過點(diǎn)F的直線與橢圓C相交于A,B兩點(diǎn),直線l的傾斜角為60o,.(I) 求橢圓C的離心率;(II) 如果|AB|=,求橢圓C的方程.解:(xx江西理數(shù))21. (本小題滿分高考資源*網(wǎng)12分)設(shè)橢圓,拋物線。(1) 若經(jīng)過的兩個焦點(diǎn),求的離心率;(2) 設(shè)A(0,b),,又M、N為與不在y軸上的兩個交點(diǎn),若AMN的垂心為,且QMN的重心在上,求橢圓和拋物線的方程?!窘馕觥靠疾闄E圓和拋物線的定義、基本量,通過交點(diǎn)三角形來確認(rèn)方程。(xx重慶理數(shù))(20)(本小題滿分12分,(I)小問5分,(II)小問7分)已知以原點(diǎn)O為中心,為右焦點(diǎn)的雙曲線C的離心率。(I) 求雙曲線C的標(biāo)準(zhǔn)方程及其漸近線方程;(II) 如題(20)圖,已知過點(diǎn)的直線與過點(diǎn)(其中)的直線的交點(diǎn)E在雙曲線C上,直線MN與兩條漸近線分別交與G、H兩點(diǎn),求的面積。(xx北京理數(shù))(19)(本小題共14分)在平面直角坐標(biāo)系xOy中,點(diǎn)B與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對稱,P是動點(diǎn),且直線AP與BP的斜率之積等于.()求動點(diǎn)P的軌跡方程;()設(shè)直線AP和BP分別與直線x=3交于點(diǎn)M,N,問:是否存在點(diǎn)P使得PAB與PMN的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由。(II)解法一:設(shè)點(diǎn)的坐標(biāo)為,點(diǎn),得坐標(biāo)分別為,. 則直線的方程為,直線的方程為令得,.于是得面積 因為,所以 故存在點(diǎn)S使得與的面積相等,此時點(diǎn)的坐標(biāo)為.(xx四川理數(shù))(20)(本小題滿分12分)已知定點(diǎn)A(1,0),F(xiàn)(2,0),定直線l:x,不在x軸上的動點(diǎn)P與點(diǎn)F的距離是它到直線l的距離的2倍.設(shè)點(diǎn)P的軌跡為E,過點(diǎn)F的直線交E于B、C兩點(diǎn),直線AB、AC分別交l于點(diǎn)M、N()求E的方程;()試判斷以線段MN為直徑的圓是否過點(diǎn)F,并說明理由. 本小題主要考察直線、軌跡方程、雙曲線等基礎(chǔ)知識,考察平面機(jī)襲擊和的思想方法及推理運(yùn)算能力.因為x1、x21所以直線AB的方程為y(x1)因此M點(diǎn)的坐標(biāo)為(),同理可得 因此 0(xx天津理數(shù))(20)(本小題滿分12分)已知橢圓的離心率,連接橢圓的四個頂點(diǎn)得到的菱形的面積為4。(1) 求橢圓的方程;(2) 設(shè)直線與橢圓相交于不同的兩點(diǎn),已知點(diǎn)的坐標(biāo)為(),點(diǎn)在線段的垂直平分線上,且,求的值(2)解:由(1)可知A(-2,0)。設(shè)B點(diǎn)的坐標(biāo)為(x1,y1),直線l的斜率為k,則直線l的方程為y=k(x+2),