2019-2020年高考數(shù)學 6年高考母題精解精析專題13 統(tǒng)計 文.doc
2019-2020年高考數(shù)學 6年高考母題精解精析專題13 統(tǒng)計 文一、選擇題1.【xx高考新課標文3】在一組樣本數(shù)據(jù)(x1,y1),(x2,y2),(xn,yn)(n2,x1,x2,xn不全相等)的散點圖中,若所有樣本點(xi,yi)(i=1,2,n)都在直線y=x+1上,則這組樣本數(shù)據(jù)的樣本相關(guān)系數(shù)為 (A)1 (B)0 (C) (D)1【答案】D【解析】根據(jù)樣子相關(guān)系數(shù)的定義可知,當所有樣本點都在直線上時,相關(guān)系數(shù)為1,選D.2.【xx高考山東文4】 (4)在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應(yīng)相同的是 (A)眾數(shù)(B)平均數(shù)(C)中位數(shù)(D)標準差3.【xx高考四川文3】交通管理部門為了解機動車駕駛員(簡稱駕駛員)對某新法規(guī)的知曉情況,對甲、乙、丙、丁四個社區(qū)做分層抽樣調(diào)查。假設(shè)四個社區(qū)駕駛員的總?cè)藬?shù)為,其中甲社區(qū)有駕駛員96人。若在甲、乙、丙、丁四個社區(qū)抽取駕駛員的人數(shù)分別為12,21,25,43,則這四個社區(qū)駕駛員的總?cè)藬?shù)為( )A、101 B、808 C、1212 D、xx4.【xx高考陜西文3】對某商店一個月內(nèi)每天的顧客人數(shù)進行了統(tǒng)計,得到樣本的莖葉圖(如圖所示),則改樣本的中位數(shù)、眾數(shù)、極差分別是 ( )A46,45,56 B46,45,53C47,45,56 D45,47,535.【xx高考江西文6】小波一星期的總開支分布圖如圖1所示,一星期的食品開支如圖2所示,則小波一星期的雞蛋開支占總開支的百分比為A.30 B.10 C.3 D.不能確定6.【xx高考湖南文5】設(shè)某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過樣本點的中心(,)C.若該大學某女生身高增加1cm,則其體重約增加0.85kgD.若該大學某女生身高為170cm,則可斷定其體重必為58.79kg【答案】D【解析】由回歸方程為=0.85x-85.71知隨的增大而增大,所以y與x具有正的線性相關(guān)關(guān)系,由最小二乘法建立的回歸方程得過程知,所以回歸直線過樣本點的中心(,),利用回歸方程可以預(yù)測估計總體,所以D不正確.7.【xx高考湖北文2】容量為20的樣本數(shù)據(jù),分組后的頻數(shù)如下表則樣本數(shù)據(jù)落在區(qū)間10,40的頻率為A 0.35 B 0.45 C 0.55 D 0.65 二、填空題8【xx高考廣東文13由正整數(shù)組成的一組數(shù)據(jù),其平均數(shù)和中位數(shù)都是,且標準差等于,則這組數(shù)據(jù)為 .(從小到大排列)9.【xx高考山東文14】右圖是根據(jù)部分城市某年6月份的平均氣溫(單位:)數(shù)據(jù)得到的樣本頻率分布直方圖,其中平均氣溫的范圍是20.5,26.5,樣本數(shù)據(jù)的分組為,.已知樣本中平均氣溫低于22.5的城市個數(shù)為11,則樣本中平均氣溫不低于25.5的城市個數(shù)為.10.【xx高考浙江文11】某個年級有男生560人,女生420人,用分層抽樣的方法從該年級全體學生中抽取一個容量為280的樣本,則此樣本中男生人數(shù)為_.【答案】160 【解析】總體中男生與女生的比例為,樣本中男生人數(shù)為.11.【xx高考湖南文13】圖2是某學校一名籃球運動員在五場比賽中所得分數(shù)的莖葉圖,則該運動員在這五場比賽中得分的方差為_.(注:方差,其中為x1,x2,xn的平均數(shù))12.【xx高考湖北文11】一支田徑運動隊有男運動員56人,女運動員42人?,F(xiàn)用分層抽樣的方法抽取若干人,若抽取的男運動員有8人,則抽取的女運動員有_人。【答案】 6【解析】設(shè)抽取的女運動員的人數(shù)為,則根據(jù)分層抽樣的特性,有,解得.故抽取的女運動員為6人.13.【2102高考福建文14】一支田徑隊有男女運動員98人,其中男運動員有56人.按男女比例用分層抽樣的方法,從全體運動員中抽出一個容量為28的樣本,那么應(yīng)抽取女運動員人數(shù)是_.【答案】12【解析】設(shè)應(yīng)抽取的女運動員人數(shù)是,則,易得.14.【xx高考江蘇2】(5分)某學校高一、高二、高三年級的學生人數(shù)之比為,現(xiàn)用分層抽樣的方法從該校高中三個年級的學生中抽取容量為50的樣本,則應(yīng)從高二年級抽取 名學生三、解答題 15.【xx高考遼寧文19】(本小題滿分12分)電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名。下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖;將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性。 ()根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關(guān)?非體育迷體育迷合計男女合計 ()將日均收看該體育項目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率。附【答案】【解析】本題主要考查統(tǒng)計中的頻率分布直方圖、獨立性檢驗、古典概型,考查分析解決問題的能力、運算求解能力,難度適中。準確讀取頻率分布直方圖中的數(shù)據(jù)是解題的關(guān)鍵。求概率時列舉基本事件一定要做到不重不漏,此處極容易出錯。16.【xx高考安徽文18】(本小題滿分13分)若某產(chǎn)品的直徑長與標準值的差的絕對值不超過1mm 時,則視為合格品,否則視為不合格品。在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機抽取5000件進行檢測,結(jié)果發(fā)現(xiàn)有50件不合格品。計算這50件不合格品的直徑長與標準值的差(單位:mm), 將所得數(shù)據(jù)分組,得到如下頻率分布表:分組頻數(shù)頻率-3, -2)0.10-2, -1)8(1,20.50(2,310(3,4合計501.00()將上面表格中缺少的數(shù)據(jù)填在答題卡的相應(yīng)位置;()估計該廠生產(chǎn)的此種產(chǎn)品中,不合格品的直徑長與標準值的差落在區(qū)間(1,3內(nèi)的概率;()現(xiàn)對該廠這種產(chǎn)品的某個批次進行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品。據(jù)此估算這批產(chǎn)品中的合格品的件數(shù)。()不合格品的直徑長與標準值的差落在區(qū)間(1,3內(nèi)的概率為,()合格品的件數(shù)為(件)。答:()不合格品的直徑長與標準值的差落在區(qū)間(1,3內(nèi)的概率為()合格品的件數(shù)為(件)17.【xx高考廣東文17】(本小題滿分13分)某校100名學生期中考試語文成績的頻率分布直方圖如圖4所示,其中成績分組區(qū)間是:,. (1)求圖中的值; (2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;(3)若這100名學生語文成績某些分數(shù)段的人數(shù)()與數(shù)學成績相應(yīng)分數(shù)段的人數(shù)()之比如下表所示,求數(shù)學成績在之外的人數(shù).分數(shù)段數(shù)學成績在的人數(shù)為:,數(shù)學成績在的人數(shù)為: 所以數(shù)學成績在之外的人數(shù)為:。18【2102高考福建文18】(本題滿分12分)某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):(I)求回歸直線方程=bx+a,其中b=-20,a=-b;(II)預(yù)計在今后的銷售中,銷量與單價仍然服從(I)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入-成本)【答案】【xx年高考試題】一、選擇題:1. (xx年高考江西卷文科7)為了普及環(huán)保知識,增強環(huán)保意識,某大學隨即抽取30名學生參加環(huán)保知識測試,得分(十分制)如圖所示,假設(shè)得分值的中位數(shù)為,眾數(shù)為,平均值為,則( )A. B. C. D.【答案】D 【解析】計算可以得知,中位數(shù)為5.5,眾數(shù)為5所以選D2. (xx年高考江西卷文科8)為了解兒子身高與其父親身高的關(guān)系,隨機抽取5對父子的身高數(shù)據(jù)如下:父親身高x(cm)174176176176178兒子身高y(cm)175175176177177則y對x的線性回歸方程為A.y = x-1 B.y = x+1 C.y = 88+ D.y = 1763. (xx年高考福建卷文科4)某校選修乒乓球課程的學生中,高一年級有30名,高二年級有40名?,F(xiàn)用分層抽樣的方法在這70名學生中抽取一個樣本,已知在高一年級的學生中抽取了6名,則在高二年級的學生中應(yīng)抽取的人數(shù)為A. 6 B. 8 C. 10 D.12【答案】B【解析】設(shè)樣本容量為N,則,所以,故在高二年級的學生中應(yīng)抽取的人數(shù)為,選B.4. (xx年高考山東卷文科8)某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表 根據(jù)上表可得回歸方程中的為9.4,據(jù)此模型預(yù)報廣告費用為6萬元時銷售額為(A)63.6萬元 (B)65.5萬元 (C)67.7萬元 (D)72.0萬元5. (xx年高考四川卷文科2)有一個容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下: 2 4 9 18 11 12 7 3根據(jù)樣本的頻率分布估計,大于或等于31.5的數(shù)據(jù)約占(A) (B) (C) (D) 答案:B解析:大于或等于31.5的數(shù)據(jù)所占的頻數(shù)為12+7+3=22,該數(shù)據(jù)所占的頻率約為. 6. (xx年高考陜西卷文科9)設(shè) ,是變量和的次方個樣本點,直線是由這些樣本點通過最小二乘法得到的線性回歸直線(如圖),以下結(jié)論正確的是( )(A) 直線過點(B)和的相關(guān)系數(shù)為直線的斜率(C)和的相關(guān)系數(shù)在0到1之間(D)當為偶數(shù)時,分布在兩側(cè)的樣本點的個數(shù)一定相同 【答案】A【解析】:由得又,所以則直線過點,故選A 7(xx年高考湖南卷文科5)通過隨機詢問110名不同的大學生是否愛好某項運動,得到如下的列聯(lián)表:男女總計愛好402060不愛好203050總計6050110由附表:0050001000013841663510828參照附表,得到的正確結(jié)論是( )A 有99%以上的把握認為“愛好該項運動與性別有關(guān)”B 有99%以上的把握認為“愛好該項運動與性別無關(guān)”C 在犯錯誤的概率不超過01%的前提下,認為“愛好該項運動與性別有關(guān)”D 在犯錯誤的概率不超過01%的前提下,認為“愛好該項運動與性別無關(guān)”8(xx年高考湖北卷文科5)有一個容量為200的樣本,其頻率分布直方圖如圖所示,根據(jù)樣本的頻率分布直方圖估計,樣本數(shù)據(jù)落在區(qū)間10,12內(nèi)的頻數(shù)為A.18B.36C.54D.72二、填空題:10. (xx年高考山東卷文科13)某高校甲、乙、丙、丁四個專業(yè)分別有150、150、400、300名學生,為了解學生的就業(yè)傾向,用分層抽樣的方法從該校這四個專業(yè)共抽取40名學生進行調(diào)查,應(yīng)在丙專業(yè)抽取的學生人數(shù)為 .【答案】16【解析】由題意知,抽取比例為3:3:8:6,所以應(yīng)在丙專業(yè)抽取的學生人數(shù)為40=16. 11(xx年高考廣東卷文科13)為了解籃球愛好者小李的投籃命中率與打籃球時間之間的關(guān)系,下表記錄了小李某月1號到5號每天打籃球的時間x(單位:小時)與當天投籃命中率y之間的關(guān)系:時間x12345命中率y0405060604小李這 5天的平均投籃命中率為,用線性回歸分析的方法,預(yù)測小李該月6號打6小時籃球的投籃命中率為12. (xx年高考湖北卷文科11)某市有大型超市200家、中型超市400家,小型超市1400家,為掌握各類超市的營業(yè)情況,現(xiàn)按分層抽樣方法抽取一個容量為100的樣本,應(yīng)抽取中型超市 家.答案:20 解析:應(yīng)抽取中型超市(家).13.(xx年高考浙江卷文科13)某小學為了解學生數(shù)學課程的學習情況,在3000名學生中隨機抽取200名,并統(tǒng)計這200名學生的某此數(shù)學考試成績,得到了樣本的頻率分布直方圖(如圖)。根據(jù)頻率分布直方圖3000名學生在該次數(shù)學考試中成績小于60分的學生數(shù)是_【答案】60014.(xx年高考江蘇卷6)某老師從星期一到星期五收到信件數(shù)分別是10,6,8,5,6,則該組數(shù)據(jù)的方差【答案】3.2【解析】考查方差的計算,可以先把這組數(shù)都減去6,再求方差,屬容易題.15.(xx年高考遼寧卷文科14)調(diào)查了某地若干戶家庭的年收x(單位:萬元)和年飲食支出y(單位:萬元),調(diào)查顯示年收入x與年飲食支出y具有線性相關(guān)關(guān)系,井由調(diào)查數(shù)據(jù)得到y(tǒng)對x的回歸直線方程.由回歸直線方程可知,家庭年收入每增加 1萬元,年飲食支出平均增加_萬元.【解析】(1)由頻率分布表得,即.因為抽取的20件日用品中,等級系數(shù)為4的恰有3件,所以;等級系數(shù)為5的恰有2件,所以,從而=0.1,所以.(2)從日用品中任取兩件,所有可能的結(jié)果為:,.設(shè)事件A表示“從日用品中任取兩件,其等級系數(shù)相等”,則A包含的基本事件為,共4個.又基本事件的總數(shù)為10,故所求的概率.【命題立意】本題主要考查概率、統(tǒng)計等基礎(chǔ)知識,考查數(shù)據(jù)處理能力、運算求解能力、應(yīng)用意識,考查函數(shù)與方程思想、分類與整體思想、必然與或然思想.17(xx年高考湖南卷文科18)(本題滿分12分)某河流上的一座水力發(fā)電站,每年六月份的發(fā)電量Y(單位:萬千瓦時)與該河上游在六月份的降雨量X(單位:毫米)有關(guān)據(jù)統(tǒng)計,當X=70時,Y=460;X每增加10,Y增加5;已知近20年X的值為:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160(I)完成如下的頻率分布表: 近20年六月份降雨量頻率分布表降雨量70110140160200220頻率(II)假定今年六月份的降雨量與近20年六月份的降雨量的分布規(guī)律相同,并將頻率視為概率,求今年六月份該水力發(fā)電站的發(fā)電量低于490(萬千瓦時)或超過530(萬千瓦時)的概率18(xx年高考廣東卷文科17)(本小題滿分13分)在某次測驗中,有6位同學的平均成績?yōu)?5分用表示編號為的同學所得成績,且前5位同學的成績?nèi)缦拢壕幪杗12345成績7076727072(1)求第6位同學成績,及這6位同學成績的標準差;(2)從前5位同學中,隨機地選2位同學,求恰有1位同學成績在區(qū)間中的概率19. (xx年高考陜西卷文科20)(本小題滿分13分)如圖,A地到火車站共有兩條路徑L1和L2,現(xiàn)隨機抽取100位從A地到火車站的人進行調(diào)查,調(diào)查結(jié)果如下: ()試估計40分鐘內(nèi)不能趕到火車站的概率;時間(分鐘) 選擇612181212選擇0416164()分別求通過路徑L1和L2所用時間落在上表中各時間段內(nèi)的頻率;()現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于趕往火車站,為了盡量大可能在允許的時間內(nèi)趕到火車站,試通過計算說明,他們應(yīng)如何選擇各自的路徑。解:()由已知共調(diào)查了100人,其中40分鐘內(nèi)不能趕到火車站的有12+12+16+4=44人,用頻率估計相應(yīng)的概率為0.44.()選擇的有60人,選擇的有40人,故由調(diào)查結(jié)果得頻率為:時間(分鐘)的頻率0.10.20.30.20.220. (xx年高考全國新課標卷文科19)(本小題滿分12分)某種產(chǎn)品以其質(zhì)量指標值衡量,質(zhì)量指標越大越好,且質(zhì)量指標值大于102的產(chǎn)品為優(yōu)質(zhì)產(chǎn)品,現(xiàn)在用兩種新配方(A配方、B配方)做試驗,各生產(chǎn)了100件,并測量了每件產(chǎn)品的質(zhì)量指標值,得到下面的試驗結(jié)果: A配方的頻數(shù)分布表指標值分組頻數(shù)82042228 B配方的頻數(shù)分布表指標值分組頻數(shù)41242328(1) 分別估計使用A配方,B配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品的概率;(2) 已知用B配方生產(chǎn)一件產(chǎn)品的利潤與其質(zhì)量指標的關(guān)系為:估計用B配方生產(chǎn)上述產(chǎn)品平均每件的利潤。21.(xx年高考遼寧卷文科19) (本小題滿分12分) 某農(nóng)場計劃種植某種新作物為此對這種作物的兩個品種(分別稱為品種甲和品種乙)進行田間試驗,選取兩大塊地,每大塊地分成n小塊地,在總共2n小塊地中隨機選n小塊地種植品種甲,另外n小塊地種植品種乙 ()假設(shè)n=2,求第一大塊地都種植品種甲的概率: ()試驗時每大塊地分成8小塊即n=8,試驗結(jié)束后得到品種甲和品種乙在各小塊地上的每公頃產(chǎn)量(單位kghm2)如下表:分別求品種甲和品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗結(jié)果,你認為應(yīng)該種植哪一品種?附:樣本數(shù)據(jù)x1,x2,xa的樣本方差,其中為樣本平均數(shù)。解析:(I)設(shè)第一大塊地中的兩小塊地編號為1,2,第二大塊地中的兩小塊地編號為3,4,令事件A=“第一大塊地都種品種甲”,從4小塊地中任選2小塊地種植品種甲的基本事件共6個:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)。而事件A包含1個基本事件:(1,2),所以P(A)=.(II)品種甲的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差分別是:,。品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差分別是:,由以上結(jié)果可以看出,品種乙的樣本平均數(shù)大于品種甲的樣本平均數(shù),且兩品種的樣本方差差異不大,故應(yīng)該選擇種植品種乙。22.(xx年高考安徽卷文科20)(本小題滿分10分)某地最近十年糧食需求量逐年上升,下表是部分統(tǒng)計數(shù)據(jù):年份20022004xxxxxx需求量(萬噸)236246257276286()利用所給數(shù)據(jù)求年需求量與年份之間的回歸直線方程;()利用()中所求出的直線方程預(yù)測該地xx年的糧食需求量。溫馨提示:答題前請仔細閱讀卷首所給的計算公式及說明.【解題指導】:求回歸直線方程的思維含量不高,但對數(shù)據(jù)處理和運算能力要求非常高,本題若不先對數(shù)據(jù)進行預(yù)處理,出錯的可能性很大。此外還要說明一點:試卷開頭“考生注意事項”部分已經(jīng)提示:“若對數(shù)據(jù)適當?shù)念A(yù)處理,可避免對大數(shù)字進行運算.”做卷時要注意這些細節(jié)?!緓x年高考試題】(xx陜西文數(shù))4.如圖,樣本A和B分別取自兩個不同的總體,它們的樣本平均數(shù)分別為,樣本標準差分別為sA和sB,則 B(A) ,sAsB(B) ,sAsB(C) ,sAsB(D) ,sAsB解析:本題考查樣本分析中兩個特征數(shù)的作用10;A的取值波動程度顯然大于B,所以sAsB(xx重慶文數(shù))(5)某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人,為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本 . 若樣本中的青年職工為7人,則樣本容量為(A)7 (B)15 (C)25 (D)35解析:青年職工、中年職工、老年職工三層之比為7:5:3,所以樣本容量為(xx四川文數(shù))(4)一個單位有職工800人,期中具有高級職稱的160人,具有中級職稱的320人,具有初級職稱的200人,其余人員120人.為了解職工收入情況,決定采用分層抽樣的方法,從中抽取容量為40的樣本.則從上述各層中依次抽取的人數(shù)分別是(A)12,24,15,9 (B)9,12,12,7 (C)8,15,12,5 (D)8,16,10,6解析:因為 故各層中依次抽取的人數(shù)分別是,答案:D(xx山東文數(shù))(6)在某項體育比賽中,七位裁判為一選手打出的分數(shù)如下: 90 89 90 95 93 94 93 去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均值和方差分別為(A)92 , 2 (B) 92 , 2.8(C) 93 , 2 (D) 93 , 2.8答案:B(xx安徽文數(shù))(14)某地有居民100 000戶,其中普通家庭99 000戶,高收入家庭1 000戶從普通家庭中以簡單隨機抽樣方式抽取990戶,從高收入家庭中以簡單隨機抽樣方式抽取l00戶進行調(diào)查,發(fā)現(xiàn)共有120戶家庭擁有3套或3套以上住房,其中普通家庭50戶,高收人家庭70戶依據(jù)這些數(shù)據(jù)并結(jié)合所掌握的統(tǒng)計知識,你認為該地擁有3套或3套以上住房的家庭所占比例的合理估計是 .14.(xx重慶文數(shù))(14)加工某一零件需經(jīng)過三道工序,設(shè)第一、二、三道工序的次品率分別為、,且各道工序互不影響,則加工出來的零件的次品率為_ .解析:加工出來的零件的次品的對立事件為零件是正品,由對立事件公式得加工出來的零件的次品率(xx浙江文數(shù))(11)在如圖所示的莖葉圖中,甲、乙兩組數(shù)據(jù)的中位數(shù)分別是 、 答案:45 46(xx福建文數(shù))14 將容量為n的樣本中的數(shù)據(jù)分成6組,繪制頻率分布直方圖。若第一組至第六組數(shù)據(jù)的頻率之比為2:3:4:6:4:1,且前三組數(shù)據(jù)的頻數(shù)之和等于27,則n等于 。(xx安徽文數(shù))18、(本小題滿分13分) 某市2010年4月1日4月30日對空氣污染指數(shù)的監(jiān)測數(shù)據(jù)如下(主要污染物為可吸入顆粒物): 61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91, 77,86,81,83,82,82,64,79,86,85,75,71,49,45,() 完成頻率分布表;()作出頻率分布直方圖;()根據(jù)國家標準,污染指數(shù)在050之間時,空氣質(zhì)量為優(yōu):在51100之間時,為良;在101150之間時,為輕微污染;在151200之間時,為輕度污染。請你依據(jù)所給數(shù)據(jù)和上述標準,對該市的空氣質(zhì)量給出一個簡短評價.【命題意圖】本題考查頻數(shù),頻率及頻率分布直方圖,考查運用統(tǒng)計知識解決簡單實際問題的能力,數(shù)據(jù)處理能力和運用意識. 【解題指導】(1)首先根據(jù)題目中的數(shù)據(jù)完成頻率分布表,作出頻率分布直方圖,根據(jù)污染指數(shù),確定空氣質(zhì)量為優(yōu)、良、輕微污染、輕度污染的天數(shù)?!緓x年高考試題】5( xx廣東文)某單位200名職工的年齡分布情況如圖2,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機按1200編號,并按編號順序平均分為40組(15號,610號,196200號)若第5組抽出的號碼為22,則第8組抽出的號碼應(yīng)是 。若用分層抽樣方法,則40歲以下年齡段應(yīng)抽取 人 圖 2答案:37, 20解析:由分組可知,抽號的間隔為5,又因為第5組抽出的號碼為22,所以第6組抽出的號碼為27,第7組抽出的號碼為32,第8組抽出的號碼為37 40歲以下年齡段的職工數(shù)為,則應(yīng)抽取的人數(shù)為人7(xx浙江文)某個容量為的樣本的頻率分布直方圖如下,則在區(qū)間上的數(shù)據(jù)的頻數(shù)為 30命題意圖:此題考查了頻率分布直方圖,通過設(shè)問既考查了設(shè)圖能力,也考查了運用圖表解決實際問題的水平和能力 12( xx廣東文)(本小題滿分13分)隨機抽取某中學甲乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;(2)計算甲班的樣本方差(3)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率16( xx山東文)(本小題滿分12分) 一汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產(chǎn)量如下表(單位:輛):轎車A轎車B轎車C舒適型100150z標準型300450600按類型分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛(1) 求z的值 (2) 用分層抽樣的方法在C類轎車中抽取一個容量為5的樣本將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率;(3) 用隨機抽樣的方法從B類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:94, 86, 92, 96, 87, 93, 90, 82把這8輛轎車的得分看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過05的概率18(xx安徽文)(本小題滿分12分) 某良種培育基地正在培育一種小麥新品種A,將其與原有的一個優(yōu)良品種B進行對照試驗,兩種小麥各種植了25畝,所得畝產(chǎn)數(shù)據(jù)(單位:千克)如下: 品種A:357,359,367,368,375,388,392,399,400,405,414, 415,421,423,423,427,430,430,434,443,445,451,454品種B:363,371,374,383,385,386,391,392,394,395,397 397,400,401,401,403,406,407,410,412,415,416,422,430()完成所附的莖葉圖()用莖葉圖處理現(xiàn)有的數(shù)據(jù),有什么優(yōu)點? ()通過觀察莖葉圖,對品種A與B的畝產(chǎn)量及其穩(wěn)定性進行比較,寫出統(tǒng)計結(jié)論。思路:由統(tǒng)計知識可求出A、B兩種品種的小麥穩(wěn)定性大小并畫出莖葉圖,用莖葉圖處理數(shù)據(jù),看其分布就比較明了。 解析:(1)莖葉圖如圖所示AB9 7358 73635371 48383 5 69 2391 2 4 457 75 0400 1 1 3 6 75 4 2410 2 5 67 3 3 14224 0 04305 5 3444 145(2)用莖葉圖處理現(xiàn)有的數(shù)據(jù)不僅可以看出數(shù)據(jù)的分布狀況,而且可以看出每組中的具體數(shù)據(jù)(3)通過觀察莖葉圖,可以發(fā)現(xiàn)品種A的平均每畝產(chǎn)量為4111千克,品種B的平均畝產(chǎn)量為3978千克由此可知,品種A的平均畝產(chǎn)量比品種B的平均畝產(chǎn)量高但品種A的畝產(chǎn)量不夠穩(wěn)定,而品種B的畝產(chǎn)量比較集中D平均產(chǎn)量附近18(xx天津文)(本小題滿分12分)為了了解某工廠開展群眾體育活動的情況,擬采用分層抽樣的方法從A,B,C三個區(qū)中抽取7個工廠進行調(diào)查,已知A,B,C區(qū)中分別有18,27,18個工廠()求從A,B,C區(qū)中分別抽取的工廠個數(shù);()若從抽取的7個工廠中隨機抽取2個進行調(diào)查結(jié)果的對比,用列舉法計算這2個工廠中至少有1個來自A區(qū)的概率。答案:(1) 2,3,2(2) 解析: (1)解: 工廠總數(shù)為18+27+18=63,樣本容量與總體中的個體數(shù)比為,所以從A,B,C三個區(qū)中應(yīng)分別抽取的工廠個數(shù)為2,3,222(xx寧夏海南文)(本小題滿分12分) 某工廠有工人1000名,其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人)現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù))()A類工人中和B類工人各抽查多少工人? ()從A類工人中抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2表1:生產(chǎn)能力分組人數(shù)4853表2:生產(chǎn)能力分組人數(shù) 6 y 36 18(1) 先確定,再在答題紙上完成下列頻率分布直方圖。就生產(chǎn)能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更?。浚ú挥糜嬎?,可通過觀察直方圖直接回答結(jié)論)(ii)分別估計類工人和類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人和生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表)。23(xx福建文)(本小題滿分12分)袋中有大小、形狀相同的紅、黑球各一個,現(xiàn)一次有放回地隨機摸取3次,每次摸取一個球 (I)試問:一共有多少種不同的結(jié)果?請列出所有可能的結(jié)果; ()若摸到紅球時得2分,摸到黑球時得1分,求3次摸球所得總分為5的概率?!緓x年高考試題】9(xx山東文)從某項綜合能力測試中抽取100人的成績,統(tǒng)計如表,則這100人成績的標準差為( )分數(shù)54321人數(shù)2010303010ABC3D解析:本小題主要考查平均數(shù)、方差、標準差的概念及其運算。 答案:B4(xx廣東文)為了調(diào)查某廠工人生產(chǎn)某種產(chǎn)品的能力,隨機抽查了20位工人某天生產(chǎn)該產(chǎn)品的數(shù)量產(chǎn)品數(shù)量的分組區(qū)間為,由此得到頻率分布直方圖如圖3,則這20名工人中一天生產(chǎn)該產(chǎn)品數(shù)量在的人數(shù)是A B C D