歡迎來到裝配圖網! | 幫助中心 裝配圖網zhuangpeitu.com!
裝配圖網
ImageVerifierCode 換一換
首頁 裝配圖網 > 資源分類 > DOC文檔下載  

《數(shù)學廣角——鴿巢問題》教學設計(共4頁)

  • 資源ID:45971951       資源大?。?span id="0nfn1sd" class="font-tahoma">18.50KB        全文頁數(shù):4頁
  • 資源格式: DOC        下載積分:20積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要20積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

《數(shù)學廣角——鴿巢問題》教學設計(共4頁)

精選優(yōu)質文檔-傾情為你奉上數(shù)學廣角鴿巢問題第1課時教學設計 【教學目標】1、知識與技能:了解“鴿巢問題”的特點,理解“鴿巢原理”的含義。使學生學會用此原理解決簡單的實際問題。2、過程與方法:經歷探究“鴿巢原理”的學習過程,體驗觀察、猜測、實驗、推理等活動的學習方法,滲透數(shù)形結合的思想。3、情感、態(tài)度和價值觀:通過用“鴿巢問題”解決簡單的實際問題,激發(fā)學生的學習興趣,使學生感受數(shù)學的魅力。【教學重難點】重點:引導學生把具體問題轉化成“鴿巢問題”。難點:找出“鴿巢問題”解決的竅門進行反復推理?!窘虒W過程】一、 情境導入教師:同學們,你們在一些公共場所或旅游景點見過電腦算命嗎?“電腦算命”看起來很深奧,只要你報出自己的出生年月日和性別,一按鍵,屏幕上就會出現(xiàn)所謂性格、命運的句子。通過今天的學習,我們掌握了“鴿巢問題”之后,你就不難證明這種“電腦算命”是非??尚突奶频?,是不可相信的鬼把戲了。(板書課題:鴿巢問題)教師:通過學習,你想解決哪些問題?根據(jù)學生回答,教師把學生提出的問題歸結為:“鴿巢問題”是怎樣的?這里的“鴿巢”是指什么?運用“鴿巢問題”能解決哪些問題?怎樣運用“鴿巢問題”解決問題?二、探究新知:1. 教學例1.(課件出示例題1情境圖)思考問題:把4支鉛筆放進3個筆筒中,不管怎么放,總有1個筆筒里至少有2支鉛筆。為什么呢?“總有”和“至少”是什么意思?學生通過操作發(fā)現(xiàn)規(guī)律理解關鍵詞的含義探究證明認識“鴿巢問題”的學習過程來解決問題。(1) 操作發(fā)現(xiàn)規(guī)律:通過把4支鉛筆放進3個筆筒中,可以發(fā)現(xiàn):不管怎么放,總有1個筆筒里至少有2支鉛筆。(2) 理解關鍵詞的含義:“總有”和“至少”是指把4支鉛筆放進3個筆筒中,不管怎么放,一定有1個筆筒里的鉛筆數(shù)大于或等于2支。(3) 探究證明。方法一:用“枚舉法”證明。方法二:用“分解法”證明。把4分解成3個數(shù)。由圖可知,把4分解成3個數(shù),與枚舉法相似,也有4中情況,每一種情況分得的3個數(shù)中,至少有1個數(shù)是不小于2的數(shù)。方法三:用“假設法”證明。通過以上幾種方法證明都可以發(fā)現(xiàn):把4只鉛筆放進3個筆筒中,無論怎么放,總有1個筆筒里至少放進2只鉛筆。(4) 認識“鴿巢問題” 像上面的問題就是“鴿巢問題”,也叫“抽屜問題”。在這里,4支鉛筆是要分放的物體,就相當于4只“鴿子”,“3個筆筒”就相當于3個“鴿巢”或“抽屜”,把此問題用“鴿巢問題”的語言描述就是把4只鴿子放進3個籠子,總有1個籠子里至少有2只鴿子。這里的“總有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鴿子最多的那個“籠子”里鴿子“最少”的個數(shù)。小結:只要放的鉛筆數(shù)比筆筒的數(shù)量多,就總有1個筆筒里至少放進2支鉛筆。如果放的鉛筆數(shù)比筆筒的數(shù)量多2,那么總有1個筆筒至少放2支鉛筆;如果放的鉛筆比筆筒的數(shù)量多3,那么總有1個筆筒里至少放2只鉛筆小結:只要放的鉛筆數(shù)比筆筒的數(shù)量多,就總有1個筆筒里至少放2支鉛筆。(5) 歸納總結:鴿巢原理(一):如果把m個物體任意放進n個抽屜里(m>n,且n是非零自然數(shù)),那么一定有一個抽屜里至少放進了放進了2個物體。 2、教學例2(課件出示例題2情境圖)思考問題:(一)把7本書放進3個抽屜,不管怎么放,總有1個抽屜里至少有3本書。為什么呢?(二)如果有8本書會怎樣呢?10本書呢?學生通過“探究證明得出結論”的學習過程來解決問題(一)。(1) 探究證明。方法一:用數(shù)的分解法證明。把7分解成3個數(shù)的和。把7本書放進3個抽屜里,共有如下8種情況:由圖可知,每種情況分得的3個數(shù)中,至少有1個數(shù)不小于3,也就是每種分法中最多那個數(shù)最小是3,即總有1個抽屜至少放進3本書。方法二:用假設法證明。把7本書平均分成3份,73=2(本).1(本),若每個抽屜放2本,則還剩1本。如果把剩下的這1本書放進任意1個抽屜中,那么這個抽屜里就有3本書。(2) 得出結論。通過以上兩種方法都可以發(fā)現(xiàn):7本書放進3個抽屜中,不管怎么放,總有1個抽屜里至少放進3本書。學生通過“假設分析法歸納總結”的學習過程來解決問題(二)。(1) 用假設法分析。83=2(本).2(本),剩下2本,分別放進其中2個抽屜中,使其中2個抽屜都變成3本,因此把8本書放進3個抽屜中,不管怎么放,總有1個抽屜里至少放進3本書。103=3(本).1(本),把10本書放進3個抽屜中,不管怎么放,總有1個抽屜里至少放進4本書。(2) 歸納總結: 綜合上面兩種情況,要把a本書放進3個抽屜里,如果a3=b(本).1(本)或a3=b(本).2(本),那么一定有1個抽屜里至少放進(b+1)本書。 鴿巢原理(二):我們把多余kn個的物體任意分別放進n個空抽屜(k是正整數(shù),n是非0的自然數(shù)),那么一定有一個抽屜中至少放進了(k+1)個物體。三、鞏固練習1、完成教材第70頁的“做一做”第1題。學生獨立思考解答問題,集體交流、糾正。2、完成教材第71頁練習十三的1-2題。學生獨立思考解答問題,集體交流、糾正。四、課堂總結今天這節(jié)課你有什么收獲?能說給大家聽聽嗎?專心-專注-專業(yè)

注意事項

本文(《數(shù)學廣角——鴿巢問題》教學設計(共4頁))為本站會員(58****5)主動上傳,裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。 若此文所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網速或其他原因下載失敗請重新下載,重復下載不扣分。




關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!