五年高考真題高考數(shù)學 復習 第八章 第七節(jié) 空間角與距離 理全國通用
-
資源ID:44780262
資源大?。?span id="bdfnlll" class="font-tahoma">995.50KB
全文頁數(shù):25頁
- 資源格式: DOC
下載積分:10積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
五年高考真題高考數(shù)學 復習 第八章 第七節(jié) 空間角與距離 理全國通用
第七第七節(jié)節(jié)空間角與距離空間角與距離考點一直線與平面所成的角及二面角1(20 xx廣東,5)已知向量a a(1,0,1),則下列向量中與a a成 60夾角的是()A(1,1,0)B(1,1,0)C(0,1,1)D(1,0,1)解 析設 選 項 中 的 向 量 與a a的 夾 角 為, 對 于 選 項 A , 由 于 cos1(1)01(1)01202(1)2 (1)2120212,此時夾角為 120,不滿足題意;對于選項 B,由于 cos110(1)(1)01202(1)2 12(1)20212,此時夾角為 60,滿足題意故選 B.答案B2(20 xx四川,8)如圖,在正方體ABCDA1B1C1D1中,點O為線段BD的中點設點P在線段CC1上,直線OP與平面A1BD所成的角為,則 sin的取值范圍是()A.33,1B.63,1C.63,2 23D.2 23,1解析易證AC1平面A1BD,當點P在線段CC1上從C運動到C1時,直線OP與平面A1BD所成的角的變化情況:AOA12C1OA1(點P為線段CC1的中點時,2),由于sinAOA163,sinC1OA12 2363,sin21,所以 sin的取值范圍是63,1答案B3(20 xx新課標全國,11)直三棱柱ABCA1B1C1中,BCA90,M,N分別是A1B1,A1C1的中點,BCCACC1,則BM與AN所成角的余弦值為()A.110B.25C.3010D.22解析以C1為坐標原點,建立如圖所示的空間直角坐標系,設BCCACC12,則A(2,0,2),N(1,0,0),M(1,1,0),B(0,2,2),AN(1,0,2),BM(1,1,2),cosAN,BMANBM|AN|BM|145 63303010,故選 C.答案C4(20 xx山東,4)已知三棱柱ABCA1B1C1的側(cè)棱與底面垂直,體積為94,底面是邊長為 3的正三角形若P為底面A1B1C1的中心,則PA與平面ABC所成角的大小為()A.512B.3C.4D.6解析如圖所示,由棱柱體積為94,底面正三角形的邊長為 3,可求得棱柱的高為 3.設P在平面ABC上射影為O,則可求得AO長為 1,故AP長為12( 3)22.故PAO3,即PA與平面ABC所成的角為3.答案B5(20 xx大綱全國,10)已知正四棱柱ABCDA1B1C1D1中,AA12AB,則CD與平面BDC1所成角的正弦值等于()A.23B.33C.23D.13解析設AB1,則AA12,分別以D1A1、D1C1、D1D的方向為x軸、y軸、z軸的正方向建立空間直角坐標系如右圖所示:則D(0,0,2),C1(0,1,0),B(1,1,2),C(0,1,2).DB(1,1,0),DC1(0,1,2),DC(0,1,0),設n n(x,y,z)為平面BDC1的一個法向量,則n nDB0n nDC10即xy0y2z0,取n n(2,2,1)設CD與平面BDC1所成角為則 sin|n nDC|n n|DC|23,故選 A.答案A6.(20 xx遼寧,8)如圖,四棱錐SABCD的底面為正方形,SD底面ABCD,則下列結(jié)論中不正確的是()AACSBBAB平面SCDCSA與平面SBD所成的角等于SC與平面SBD所成的角DAB與SC所成的角等于DC與SA所成的角解析四邊形ABCD是正方形,ACBD.又SD底面ABCD,SDAC.其中SDBDD,AC面SDB,從而ACSB.故 A 正確;易知 B 正確;設AC與DB交于O點,連接SO.則SA與平面SBD所成的角為ASO,SC與平面SBD所成的角為CSO,又OAOC,SASC,ASOCSO.故 C 正確,由排除法可知選 D.答案D7(20 xx四川,14)如圖,四邊形ABCD和ADPQ均為正方形,它們所在的平面互相垂直,動點M在線段PQ上,E、F分別為AB、BC的中點設異面直線EM與AF所成的角為,則 cos的最大值為_解析建立空間直角坐標系如圖所示,設AB1,則AF1,12,0,E12,0,0,設M(0,y,1)(0y1),則EM12,y,1,cos1212y11414y211y52 4y25.設異面直線所成的角為,則 cos|cos|1y52 4y252 551y4y25,令t1y,則y1t,0y1,0t1,那么 cos|cos|2 55t4t28t92 55t24t28t92 55148t9t2,令x1t,0t1,x1,那么 cos2 55148x9x2,又z9x28x4 在1,)上單增,x1,zmin5,此時 cos的最大值2 55152 555525.答案258.(20 xx安徽,19)如圖所示,在多面體A1B1D1DCBA,四邊形AA1B1B,ADD1A1,ABCD均為正方形,E為B1D1的中點,過A1,D,E的平面交CD1于F.(1)證明:EFB1C.(2)求二面角EA1DB1的余弦值(1)證明由正方形的性質(zhì)可知A1B1ABDC, 且A1B1ABDC, 所以四邊形A1B1CD為平行四邊形,從而B1CA1D,又A1D面A1DE,B1C 面A1DE,于是B1C面A1DE.又B1C面B1CD1.面A1DE面B1CD1EF,所以EFB1C.(2)解因為四邊形AA1B1B,ADD1A1,ABCD均為正方形,所以AA1AB,AA1AD,ABAD且AA1ABAD.以A為原點,分別以AB,AD,AA1為x軸,y軸和z軸單位正向量建立如圖所示的空間直角坐標系,可得點的坐標A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E點為B1D1的中點,所以E點的坐標為12,12,1.設面A1DE的法向量n n1(r1,s1,t1),而該面上向量A1E12,12,0,A1D(0,1,1),由n n1A1E.n n1 1A1D得r1,s1,t1應滿足的方程組12r112s10,s1t10,(1,1,1)為其一組解,所以可取n n1(1,1,1)設面A1B1CD的法向量n n2(r2,s2,t2),而該面上向量A1B1(1,0,0),A1D(0,1,1),由此同理可得n n2(0,1,1)所以結(jié)合圖形知二面角EA1DB1的余弦值為|n n1n n2|n n1|n n2|23 263.9(20 xx重慶,19)如圖,三棱錐PABC中,PC平面ABC,PC3,ACB2.D,E分別為線段AB,BC上的點,且CDDE 2,CE2EB2.(1)證明:DE平面PCD;(2)求二面角APDC的余弦值(1)證明由PC平面ABC,DE平面ABC,故PCDE.由CE2,CDDE 2得CDE為等腰直角三角形,故CDDE.由PCCDC,DE垂直于平面PCD內(nèi)兩條相交直線,故DE平面PCD.(2)解由(1)知,CDE為等腰直角三角形,DCE4,如圖,過D作DF垂直CE于F,易知DFFCFE1,又已知EB1,故FB2.由ACB2得DFAC,DFACFBBC23,故AC32DF32.以C為坐標原點,分別以CA,CB,CP的方向為x軸,y軸,z軸的正方向建立空間直角坐標系,則C(0,0,0),P(0,0,3),A32,0,0,E(0,2,0),D(1,1,0),ED(1,1,0),DP(1,1,3),DA12,1,0.設平面PAD的法向量為n n1(x1,y1,z1),由n n1DP0,n n1DA0,得x1y13z10,12x1y10,故可取n n1(2,1,1)由(1)可知DE平面PCD,故平面PCD的法向量n n2可取為ED,即n n2(1,1,0)從而法向量n n1,n n2的夾角的余弦值為cos n n1,n n2n n1n n2|n n1|n n2|36,故所求二面角APDC的余弦值為36.10(20 xx北京,17)如圖,在四棱錐AEFCB中,AEF為等邊三角形,平面AEF平面EFCB,EFBC,BC4,EF2a,EBCFCB60,O為EF的中點(1) 求證:AOBE;(2) 求二面角FAEB的余弦值;(3)若BE平面AOC,求a的值(1)證明因為AEF是等邊三角形,O為EF的中點,所以AOEF.又因為平面AEF平面EFCB.AO平面AEF,所以AO平面EFCB.所以AOBE.(2)解取BC中點G,連接OG.由題設知EFCB是等腰梯形,所以OGEF.由(1)知AO平面EFCB.又OG平面EFCB,所以OAOG.如圖建立空間直角坐標系Oxyz,則E(a,0,0),A(0,0, 3a),B(2, 3(2a),0),EA(a,0, 3a),BE(a2, 3(a2),0)設平面AEB的法向量為n n(x,y,z),則n nEA0,n nBE0,即ax 3az0,(a2)x 3(a2)y0.令z1,則x 3,y1,于是n n( 3,1,1)平面AEF的法向量為p p(0,1,0)所以 cosn n,p pn np p|n n|p p|55.由題知二面角FAEB為鈍角,所以它的余弦值為55.(3)解因為BE平面AOC,所以BEOC,即BEOC0,因為BE(a2, 3(a2),0),OC(2, 3(2a),0),所以BEOC2(a2)3(a2)2.由BEOC0 及 0a2,解得a43.11(20 xx四川,18)一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示,在正方體中,設BC的中點為M,GH的中點為N.(1)請將字母F,G,H標記在正方體相應的頂點處(不需說明理由);(2)證明:直線MN平面BDH;(3)求二面角AEGM的余弦值(1)解點F,G,H的位置如圖所示(2)證明連接BD,設O為BD的中點,因為M,N分別是BC,GH的中點,所以OMCD,且OM12CD,HNCD,且HN12CD,所以OMHN,OMHN,所以MNHO是平行四邊形,從而MNOH,又MN 平面BDH,OH平面BDH,所以MN平面BDH.(3)解法一連接AC,過M作MPAC于P,在正方體ABCDEFGH中,ACEG,所以MPEG,過P作PKEG于K,連接KM,所以EG平面PKM,從而KMEG,所以PKM是二面角AEGM的平面角,設AD2,則CM1,PK2,在 RtCMP中,PMCMsin 4522,在 RtPKM中,KMPK2PM23 22,所以 cosPKMPKKM2 23,即二面角AEGM的余弦值為2 23.法二如圖,以D為坐標原點,分別以DA,DC,DH方向為x,y,z軸的正方向,建立空間直角坐標系Dxyz,設AD2,則M(1,2,0),G(0,2,2),E(2,0,2),O(1,1,0),所以,GE(2,2,0),MG(1,0,2),設平面EGM的一個法向量為n n1(x,y,z),由n n1GE0,n n1MG0,2x2y0,x2z0,取x2,得n n1(2,2,1),在正方體ABCDEFGH中,DO平面AEGC,則可取平面AEG的一個法向量為n n2DO(1,1,0),所以 cosn n1n n2|n n1|n n2|220441 1102 23,故二面角AEGM的余弦值為2 23.12(20 xx陜西,17)四面體ABCD及其三視圖如圖所示,過棱AB的中點E作平行于AD,BC的平面分別交四面體的棱BD,DC,CA于點F,G,H.(1)證明:四邊形EFGH是矩形;(2)求直線AB與平面EFGH夾角的正弦值(1)證明由該四面體的三視圖可知,BDDC,BDAD,ADDC,BDDC2,AD1.由題設,BC平面EFGH,平面EFGH平面BDCFG,平面EFGH平面ABCEH,BCFG,BCEH,F(xiàn)GEH.同理EFAD,HGAD,EFHG,四邊形EFGH是平行四邊形又ADDC,ADBD,AD平面BDC,ADBC,EFFG,四邊形EFGH是矩形(2)解法一如圖,以D為坐標原點建立空間直角坐標系,則D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),DA(0,0,1),BC(2,2,0),BA(2,0,1)設平面EFGH的法向量n n(x,y,z),EFAD,F(xiàn)GBC,n nDA0,n nBC0,得z0,2x2y0,取n n(1,1,0),sin|cosBA,n n|BAn n|BA|n n|25 2105.法二建立以D為坐標原點建立空間直角坐標系,則D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),E是AB的中點,F(xiàn),G分別為BD,DC的中點,得E(1,0,12),F(xiàn)(1,0,0),G(0,1,0)FE0,0,12 ,F(xiàn)G(1,1,0),BA(2,0,1)設平面EFGH的法向量n n(x,y,z),則n nFE0,n nFG0,得12z0,xy0,取n n(1,1,0),sin|cosBA,n n|BAn n|BA|n n|25 2105.13(20 xx天津,17)如圖,在四棱錐PABCD中,PA底面ABCD,ADAB,ABDC,ADDCAP2,AB1,點E為棱PC的中點(1)證明:BEDC;(2)求直線BE與平面PBD所成角的正弦值;(3)若F為棱PC上一點,滿足BFAC,求二面角FABP的余弦值法一依題意,以點A為原點建立空間直角坐標系(如圖),可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2)由E為棱PC的中點,得E(1,1,1)(1)證明向量BE(0,1,1),DC(2,0,0),故BEDC0.所以,BEDC.(2)解向量BD(1,2,0),PB(1,0,2)設n n(x,y,z)為平面PBD的法向量則n nBD0,n nPB0,即x2y0,x2z0.不妨令y1,可得n n(2,1,1)為平面PBD的一個法向量,于是有cosn n,BEn nBE|n n|BE|26 233.所以直線BE與平面PBD所成角的正弦值為33.(3)解向量BC(1,2,0),CP(2,2,2),AC(2,2,0),AB(1,0,0)由點F在棱PC上,設CFCP,01.故BFBCCFBCCP(12,22,2)由BFAC,得BFAC0,因此,2(12)2(22)0,解得34.即BF12,12,32 .設n n1(x,y,z)為平面FAB的法向量,則n n1AB0,n n1BF0,即x0,12x12y32z0.不妨令z1,可得n n1(0,3,1)為平面FAB的一個法向量取平面ABP的法向量n n2(0,1,0),則cosn n1 1,n n2 2n n1 1n n2 2|n|n1 1| |n|n2 2| |31013 1010.易知,二面角FABP是銳角,所以其余弦值為3 1010.法二(1)證明如圖,取PD中點M,連接EM,AM.由于E,M分別為PC,PD的中點,故EMDC,且EM12DC,又由已知,可得EMAB且EMAB,故四邊形ABEM為平行四邊形,所以BEAM.因為PA底面ABCD,故PACD,而CDDA,從而CD平面PAD,因為AM平面PAD,于是CDAM,又BEAM,所以BECD.(2)解連接BM,由(1)有CD平面PAD,得CDPD, 而EMCD, 故PDEM, 又因為ADAP,M為PD的中點, 故PDAM, 可得PDBE,所以PD平面BEM,故平面BEM平面PBD.所以直線BE在平面PBD內(nèi)的射影為直線BM,而BEEM,可得EBM為銳角,故EBM為直線BE與平面PBD所成的角依題意,有PD2 2,而M為PD中點,可得AM 2,進而BE 2.故在直角三角形BEM中,tanEBMEMBEABBE12,因此 sinEBM33.所以直線BE與平面PBD所成角的正弦值為33.(3)解如圖,在PAC中,過點F作FHPA交AC于點H.因為PA底面ABCD,故FH底面ABCD,從而FHAC.又BFAC,得AC平面FHB,因此ACBH.在底面ABCD內(nèi),可得CH3HA,從而CF3FP.在平面PDC內(nèi),作FGDC交PD于點G,于是DG3GP.由于DCAB,故GFAB,所以A,B,F(xiàn),G四點共面由ABPA,ABAD,得AB平面PAD,故ABAG.所以PAG為二面角FABP的平面角在PAG中,PA2,PG14PD22,APG45,由余弦定理可得AG102,cosPAG3 1010.所以,二面角FABP的余弦值為3 1010.14.(20 xx湖南,19)如圖,在直棱柱ABCDA1B1C1D1中,ADBC,BAD90,ACBD,BC1,ADAA13.(1)證明:ACB1D;(2)求直線B1C1與平面ACD1所成角的正弦值法一(1)證明如圖,因為BB1平面ABCD,AC平面ABCD,所以ACBB1.又ACBD,所以AC平面BB1D.而B1D平面BB1D,所以ACB1D.(2)解因為B1C1AD, 所以直線B1C1與平面ACD1所成的角等于直線AD與平面ACD1所成的角(記為)如圖,連接A1D,因為棱柱ABCDA1B1C1D1是直棱柱,且B1A1D1BAD90,所以A1B1平面ADD1A1.從而A1B1AD1.又ADAA13,所以四邊形ADD1A1是正方形,于是A1DAD1.故AD1平面A1B1D,于是AD1B1D.由(1)知,ACB1D,所以B1D平面ACD1.故ADB190.在直角梯形ABCD中,因為ACBD,所以BACADB.從而 RtABCRtDAB,故ABDABCAB.即ABDABC 3.連接AB1,易知AB1D是直角三角形,且B1D2BB21BD2BB21AB2AD221,即B1D 21.在 RtAB1D中,cosADB1ADB1D321217,即 cos(90)217.從而 sin217.即直線B1C1與平面ACD1所成角的正弦值為217.法二(1)證明易知,AB,AD,AA1兩兩垂直如圖,以A為坐標原點,AB,AD,AA1所在直線分別為x軸,y軸,z軸建立空間直角坐標系設ABt,則相關各點的坐標為:A(0,0,0),B(t,0,0),B1(t,0,3),C(t,1,0),C1(t,1,3),D(0,3,0),D1(0,3,3)從而B1D(t,3,3),AC(t,1,0),BD(t,3,0)因為ACBD,所以ACBDt2300.解得t 3或t 3(舍去)于是B1D( 3,3,3),AC( 3,1,0)因為ACB1D3300,所以ACB1D,即ACB1D.(2)解由(1)知,AD1(0,3,3),AC( 3,1,0),B1C1(0,1,0)設n n(x,y,z)是平面ACD1的一個法向量,則n nAC0,n nAD10,即3xy0,3y3z0.令x1,則n n(1, 3, 3)設直線B1C1與平面ACD1所成角為,則sin|cosn n,B1C1|n nB1C1|n n|B1C1|37217.15.(20 xx新課標全國,19)如圖,直三棱柱ABCA1B1C1中,ACBC12AA1,D是棱AA1的中點,DC1BD.(1)證明:DC1BC;(2)求二面角A1BDC1的大小(1)證明由題設知,三棱柱的側(cè)面為矩形,由于D為AA1的中點,故DCDC1.又AC12AA1,可得DC21DC2CC21,所以DC1DC.而DC1BD,DCBDD,所以DC1平面BCD.BC平面BCD,故DC1BC.(2)解由(1)知BCDC1,且BCCC1,則BC平面ACC1A1,所以CA,CB,CC1兩兩相互垂直以C為坐標原點,CA的方向為x軸的正方向,|CA|為單位長,建立如圖所示的空間直角坐標系Cxyz.由題意知A1(1,0,2),B(0,1,0),D(1,0,1),C1(0,0,2)則A1D(0,0,1),BD(1,1,1),DC1(1,0,1)設n n(x,y,z)是平面A1B1BD的法向量,則n nBD0,n nA1D0,即xyz0,z0.可取n n(1,1,0)同理,設m m(x1,y1,z1)是平面C1BD的法向量則m mBD0,m mDC10.即x1y1z10,x1z10,可取m m(1,2,1)從而 cosn n,m mn nm m|n n|m m|32.故二面角A1BDC1的大小為 30.考點二空間距離1(20 xx江西,10)如圖,在長方體ABCDA1B1C1D1中,AB11,AD7,AA112.一質(zhì)點從頂點A射向點E(4,3,12),遇長方體的面反射(反射服從光的反射原理), 將第i1 次到第i次反射點之間的線段記為Li(i2,3,4),L1AE,將線段L1,L2,L3,L4豎直放置在同一水平線上,則大致的圖形是()解析根據(jù)反射的對稱性,質(zhì)點是在過A,E,A1的平面內(nèi)運動因為711E2E3L4E1E2L3,故L1L2L4L3,故選 C.答案C2(20 xx全國,4)已知正四棱柱ABCDA1B1C1D1中,AB2,CC12 2,E為CC1的中點,則直線AC1與平面BED的距離為()A2B. 3C. 2D1解析連接AC交BD于點O,連接OE,AB2,AC2 2.又CC12 2,則ACCC1.作CHAC1于點H,交OE于點M.由OE為ACC1的中位線知,CMOE,M為CH的中點由BDAC,ECBD知,BD平面EOC,CMBD.CM平面BDE.HM為直線AC1到平面BDE的距離又ACC1為等腰直角三角形,CH2.HM1.答案D3(20 xx重慶,9)高為24的四棱錐SABCD的底面是邊長為 1 的正方形,點S、A、B、C、D均在半徑為 1 的同一球面上,則底面ABCD的中心與頂點S之間的距離為()A.24B.22C1D. 2解析如圖所示,過S點作SEAC交AC的延長線于E點,則SE面ABCD,故SE24.設球心為O,A,B,C,D所在圓的圓心為O1,則O1為AC,BD的交點在 RtOAO1中,AO122,AO1,故OO1122222.故OO12SE.過S點作SO2O1O于點O2,則O2為O1O的中點故OSO1為等腰三角形,則有O1SSO1.答案C4(20 xx大綱全國,6)已知直二面角l,點A,ACl,C為垂足,B,BDl,D為垂足,若AB2,ACBD1,則D到平面ABC的距離等于()A.23B.33C.63D1解析由題意可作圖:AB2,ACBD1,BCAB2AC2 3,CDBC2BD2 2,作DEBC于點E,則DE即為D到平面ABC的距離DCDBBCDE,DEDCDBBC21363.答案C5.(20 xx北京,14)如圖,在棱長為 2 的正方體ABCDA1B1C1D1中,E為BC的中點, 點P在線段D1E上 點P到直線CC1的距離的最小值為_解析過E點作EE1垂直底面A1B1C1D1,交B1C1于點E1,連接D1E1,過P點作PH垂直于底面A1B1C1D1,交D1E1于點H,P點到直線CC1的距離就是C1H,故當C1H垂直于D1E1時,P點到直線CC1距離最小,此時,在 RtD1C1E1中,C1HD1E1,D1E1C1HC1D1C1E1,C1H252 55.答案2 55v6(20 xx江蘇,22)如圖,在四棱錐PABCD中,已知PA平面ABCD,且四邊形ABCD為直角梯形,ABCBAD2,PAAD2,ABBC1.(1)求平面PAB與平面PCD所成二面角的余弦值;(2)點Q是線段BP上的動點,當直線CQ與DP所成的角最小時,求線段BQ的長解以AB,AD,AP為正交基底建立如圖所示的空間直角坐標系Axyz,則各點的坐標為B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2)(1)因為AD平面PAB,所以AD是平面PAB的一個法向量,AD(0,2,0)因為PC(1,1,2),PD(0,2,2)設平面PCD的法向量為m m(x,y,z),則m mPC0,m mPD0,即xy2z0,2y2z0.令y1,解得z1,x1.所以m m(1,1,1)是平面PCD的一個法向量從而 cosAD,m mADm m|AD|m m|33,所以平面PAB與平面PCD所成二面角的余弦值為33.(2)因為BP(1,0,2),設BQBP(,0,2)(01),又CB(0,1,0),則CQCBBQ(,1,2),又DP(0,2,2),從而 cosCQ,DPCQDP|CQ|DP|121022.設 12t,t1,3,則 cos2CQ,DP2t25t210t9291t592209910.當且僅當t95,即25時,|cosCQ,DP|的最大值為3 1010.因為ycosx在0,2 上是減函數(shù),此時直線CQ與DP所成角取得最小值又因為BP 1222 5,所以BQ25BP2 55.7(20 xx山東,17)如圖,在三棱臺DEFABC中,AB2DE,G,H分別為AC,BC的中點(1)求證:BD平面FGH;(2)若CF平面ABC,ABBC,CFDE,BAC45,求平面FGH與平面ACFD所成的角(銳角)的大小(1)證明法一連接DG,CD,設CDGFO,連接OH,在三棱臺DEFABC中,AB2DE,G為AC的中點,可得DFGC,DFGC,所以四邊形DFCG為平行四邊形則O為CD的中點,又H為BC的中點,所以OHBD,又OH平面FGH,BD 平面FGH,所以BD平面FGH.法二在三棱臺DEFABC中,由BC2EF,H為BC的中點,可得BHEF,BHEF,所以四邊形BHFE為平行四邊形,可得BEHF.在ABC中,G為AC的中點,H為BC的中點,所以GHAB.又GHHFH,所以平面FGH平面ABED.因為BD平面ABED,所以BD平面FGH.(2)解法一設AB2,則CF1.在三棱臺DEFABC中,G為AC的中點,由DF12ACGC,可得四邊形DGCF為平行四邊形,因此DGFC,又FC平面ABC,所以DG平面ABC.在ABC中,由ABBC,BAC45,G是AC中點所以ABBC,GBGC,因此GB,GC,GD兩兩垂直以G為坐標原點,建立如圖所示的空間直角坐標系Gxyz.所以G(0,0,0),B( 2,0,0),C(0, 2,0),D(0,0,1)可得H22,22,0,F(xiàn)(0, 2,1),故GH22,22,0,GF(0, 2,1)設n n(x,y,z)是平面FGH的一個法向量,則由n nGH0,n nGF0,可得xy0,2yz0.可得平面FGH的一個法向量n n(1,1, 2)因為GB是平面ACFD的一個法向量,GB( 2,0,0)所以 cosGB,n nGBn n|GB|n|n|22 212.所以平面FGH與平面ACFD所成角(銳角)的大小為 60.法二作HMAC于點M,作MNGF于點N,連接NH.由FC平面ABC,得HMFC,又FCACC,所以HM平面ACFD.因此GFNH,所以MNH即為所求的角在BGC中,MHBG,MH12BG22,由GNMGCF,可得MNFCGMGF,從而MN66.由HM平面ACFD,MN平面ACFD,得HMMN,因此 tanMNHHMMN 3,所以MNH60,所以平面FGH與平面ACFD所成角(銳角)的大小為 60.8(20 xx四川,18)三棱錐ABCD及其側(cè)視圖、俯視圖如圖所示設M,N分別為線段AD,AB的中點,P為線段BC上的點,且MNNP.(1)證明:P是線段BC的中點;(2)求二面角ANPM的余弦值;(1)證明如圖,取BD中點O,連接AO,CO.由側(cè)視圖及俯視圖知,ABD,BCD為正三角形,因此AOBD,OCBD.因為AO、OC平面AOC,且AOOCO,所以BD平面AOC.又因為AC平面AOC,所以BDAC.取BO的中點H,連接NH,PH,又M,N分別為線段AD,AB的中點,所以NHAO,MN/BD.因為AOBD,所以NHBD.因為MNNP,所以NPBD.因為NH,NP平面NHP,且NHNPN,所以BD平面NHP.又因為HP平面NHP,所以BDHP.又OCBD,HP平面BCD,OC平面BCD,所以HPOC.因為H為BO的中點,故P為BC中點(2)解法一如圖,作NQAC于Q,連接MQ.由(1)知,NPAC,所以NQNP.因為MNNP,所以MNQ為二面角ANPM的一個平面角由(1)知,ABD,BCD是邊長為 2 的正三角形,所以AOOC3.由俯視圖可知,AO平面BCD.因為OC平面BCD,所以AOOC,因此在等腰 RtAOC中,AC 6,作BRAC于R.在ABC中,ABBC,所以BRAB2AC22102.因為在平面ABC內(nèi),NQAC,BRAC,所以NQBR.又因為N為AB的中點,所以Q為AR的中點,因此NQBR2104.同理,可得MQ104.所以在等腰MNQ中,cosMNQMN2NQBD4NQ105.故二面角ANPM的余弦值是105.法二由俯視圖及(1)可知,AO平面BCD.因為OC,OB平面BCD,所以AOOC,AOOB.又OCOB,所以直線OA,OB,OC兩兩垂直如圖,以O為坐標原點,以OB,OC,OA的方向為x軸,y軸,z軸的正方向,建立空間直角坐標系Oxyz.則A(0,0, 3),B(1,0,0),C(0, 3,0),D(1,0,0)因為M,N分別為線段AD,AB的中點,又由(1)知,P為線段BC的中點,所以M12,0,32 ,N12,0,32 ,P12,32,0.于是AB(1,0, 3),BC(1, 3,0),MN(1,0,0),NP0,32,32 .設平面ABC的法向量n n1(x1,y1,z1),則n n1AB,n n1BC,即n n1AB0,n n1BC0,有(x1,y1,z1)(1,0, 3)0,(x1,y1,z1)(1, 3,0)0,從而x1 3z10,x1 3y10.取z11,則x1 3,y11,所以n n1( 3,1,1)連接MP,設平面MNP的法向量n n2(x2,y2,z2),則n n2MN,n n2NP,即n n2MN0,n n2NP0,有(x2,y2,z2)(1,0,0)0,(x2,y2,z2)0,32,32 0,從而x20,32y232z20.取z21,所以n n2(0,1,1)設二面角ANPM的大小為,則 cos|n n1 1n n2 2|n|n1 1| |n|n2 2| |( 3,1,1)(0,1,1)5 2|105.故二面角ANPM的余弦值是105.9.(20 xx重慶,19)如圖,在直三棱柱ABCA1B1C1中,AB4,ACBC3,D為AB的中點(1)求點C到平面A1ABB1的距離;(2)若AB1A1C,求二面角A1CDC1的平面角的余弦值解(1)由ACBC,D為AB的中點,得CDAB.又CDAA1,故CD面A1ABB1,所以點C到平面A1ABB1的距離為CDBC2BD2 5.(2)法一如圖,取D1為A1B1的中點,連接DD1,則DD1AA1CC1.又由(1)知CD面A1ABB1,故CDA1D,CDDD1,所以A1DD1為所求的二面角A1CDC1的平面角因A1D為A1C在面A1ABB1上的射影,又已知AB1A1C,由三垂線定理的逆定理得AB1A1D,從而A1AB1、A1DA都與B1AB互余,因此A1AB1A1DA,所以RtA1ADRtB1A1A.因此AA1ADA1B1AA1,即AA21ADA1B18,得AA12 2.從而A1DAA21AD22 3.所以,在 RtA1DD1中,cosA1DD1DD1A1DAA1A1D63.法二如圖,過D作DD1AA1交A1B1于D1,在直三棱柱中,易知DB,DC,DD1兩兩垂直以D為原點, 射線DB,DC,DD1分別為x軸,y軸,z軸的正半軸建立空間直角坐標系Dxyz.設直三棱柱的高為h,則A(2,0,0),A1(2,0,h),B1(2,0,h),C(0, 5,0),C1(0, 5,h),從而AB1(4,0,h),A1C(2, 5,h),由AB1A1C,有 8h20,h2 2.故DA1(2,0,2 2),CC1(0,0,2 2),DC(0, 5,0)設平面A1CD的法向量為m m(x1,y1,z1),則m mDC,m mDA1,即5y10,2x12 2z10,取z11,得m m( 2,0,1)設平面C1CD的法向量為n n(x2,y2,z2),則n nDC,n nCC1,即5y20,2 2z20,取x21,得n n(1,0,0),所以 cosm m,n nm mn n|m m|n n|221163.所以二面角A1CDC1的平面角的余弦值為63.