人教版 高中數(shù)學選修23 2. 1.2離散型隨機變量的分布列教案
-
資源ID:41727988
資源大?。?span id="e7yqhyq" class="font-tahoma">141.50KB
全文頁數(shù):5頁
- 資源格式: DOC
下載積分:10積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
人教版 高中數(shù)學選修23 2. 1.2離散型隨機變量的分布列教案
人教版高中數(shù)學精品資料2 12離散型隨機變量的分布列教學目標:知識與技能:會求出某些簡單的離散型隨機變量的概率分布。過程與方法:認識概率分布對于刻畫隨機現(xiàn)象的重要性。情感、態(tài)度與價值觀:認識概率分布對于刻畫隨機現(xiàn)象的重要性。教學重點:離散型隨機變量的分布列的概念教學難點:求簡單的離散型隨機變量的分布列授課類型:新授課 課時安排:2課時 教 具:多媒體、實物投影儀 教學過程:一、復習引入:1.隨機變量:如果隨機試驗的結果可以用一個變量來表示,那么這樣的變量叫做隨機變量 隨機變量常用希臘字母、等表示2. 離散型隨機變量:對于隨機變量可能取的值,可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量 3連續(xù)型隨機變量: 對于隨機變量可能取的值,可以取某一區(qū)間內的一切值,這樣的變量就叫做連續(xù)型隨機變量 4.離散型隨機變量與連續(xù)型隨機變量的區(qū)別與聯(lián)系: 離散型隨機變量與連續(xù)型隨機變量都是用變量表示隨機試驗的結果;但是離散型隨機變量的結果可以按一定次序一一列出,而連續(xù)性隨機變量的結果不可以一一列出 若是隨機變量,是常數(shù),則也是隨機變量 并且不改變其屬性(離散型、連續(xù)型) 請同學們閱讀課本P5-6的內容,說明什么是隨機變量的分布列?二、講解新課: 1. 分布列:設離散型隨機變量可能取得值為 x1,x2,x3,取每一個值xi(i=1,2,)的概率為,則稱表x1x2xiPP1P2Pi為隨機變量的概率分布,簡稱的分布列 2. 分布列的兩個性質:任何隨機事件發(fā)生的概率都滿足:,并且不可能事件的概率為0,必然事件的概率為1由此你可以得出離散型隨機變量的分布列都具有下面兩個性質:Pi0,i1,2,; P1+P2+=1對于離散型隨機變量在某一范圍內取值的概率等于它取這個范圍內各個值的概率的和 即 3.兩點分布列:例1.在擲一枚圖釘?shù)碾S機試驗中,令如果針尖向上的概率為,試寫出隨機變量 X 的分布列解:根據(jù)分布列的性質,針尖向下的概率是() 于是,隨機變量 X 的分布列是01P像上面這樣的分布列稱為兩點分布列兩點分布列的應用非常廣泛如抽取的彩券是否中獎;買回的一件產品是否為正品;新生嬰兒的性別;投籃是否命中等,都可以用兩點分布列來研究如果隨機變量X的分布列為兩點分布列,就稱X服從兩點分布 ( two一point distribution),而稱=P (X = 1)為成功概率兩點分布又稱0一1分布由于只有兩個可能結果的隨機試驗叫伯努利( Bernoulli ) 試驗,所以還稱這種分布為伯努利分布,4. 超幾何分布列:例 2在含有 5 件次品的 100 件產品中,任取 3 件,試求: (1)取到的次品數(shù)X 的分布列;(2)至少取到1件次品的概率解: (1)由于從 100 件產品中任取3 件的結果數(shù)為,從100 件產品中任取3件,其中恰有k 件次品的結果數(shù)為,那么從 100 件產品中任取 3 件,其中恰有 k 件次品的概率為。所以隨機變量 X 的分布列是 X0123P(2)根據(jù)隨機變量X 的分布列,可得至少取到 1 件次品的概率 P ( X1 ) = P ( X = 1 ) + P ( X = 2 ) + P ( X = 3 ) 0.138 06 + 0. 005 88 + 0. 00006 = 0. 144 00 . 一般地,在含有M 件次品的 N 件產品中,任取 n 件,其中恰有X件次品數(shù),則事件 X=k發(fā)生的概率為,其中,且稱分布列X01P為超幾何分布列如果隨機變量 X 的分布列為超幾何分布列,則稱隨機變量 X 服從超幾何分布( hypergeometriC distribution ) . 例 3在某年級的聯(lián)歡會上設計了一個摸獎游戲,在一個口袋中裝有10個紅球和20個白球,這些球除顏色外完全相同一次從中摸出5個球,至少摸到3個紅球就中獎求中獎的概率解:設摸出紅球的個數(shù)為X,則X服從超幾何分布,其中 N = 30 , M=10, n=5 于是中獎的概率 P (X3 ) = P (X =3 ) + P ( X = 4 )十 P ( X = 5 ) =0.191. 思考:如果要將這個游戲的中獎率控制在55%左右,那么應該如何設計中獎規(guī)則?例4.已知一批產品共 件,其中 件是次品,從中任取 件,試求這 件產品中所含次品件數(shù) 的分布律。解 顯然,取得的次品數(shù) 只能是不大于 與 最小者的非負整數(shù),即 的可能取值為:0,1,由古典概型知 此時稱 服從參數(shù)為的超幾何分布。注 超幾何分布的上述模型中,“任取 件”應理解為“不放回地一次取一件,連續(xù)取 件”.如果是有放回地抽取,就變成了 重貝努利試驗,這時概率分布就是二項分布.所以兩個分布的區(qū)別就在于是不放回地抽樣,還是有放回地抽樣.若產品總數(shù) 很大時,那么不放回抽樣可以近似地看成有放回抽樣.因此,當 時,超幾何分布的極限分布就是二項分布,即有如下定理.定理 如果當 時,那么當 時( 不變),則。 由于普阿松分布又是二項分布的極限分布,于是有:超幾何分布 二項分布 普阿松分布.例5一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個數(shù)是綠球個數(shù)的兩倍,黃球個數(shù)是綠球個數(shù)的一半現(xiàn)從該盒中隨機取出一個球,若取出紅球得1分,取出黃球得0分,取出綠球得1分,試寫出從該盒中取出一球所得分數(shù)的分布列分析:欲寫出的分布列,要先求出的所有取值,以及取每一值時的概率解:設黃球的個數(shù)為n,由題意知綠球個數(shù)為2n,紅球個數(shù)為4n,盒中的總數(shù)為7n ,所以從該盒中隨機取出一球所得分數(shù)的分布列為101P說明:在寫出的分布列后,要及時檢查所有的概率之和是否為1例6某一射手射擊所得的環(huán)數(shù)的分布列如下:45678910P0.020.040.060.090.280.290.22求此射手“射擊一次命中環(huán)數(shù)7”的概率分析:“射擊一次命中環(huán)數(shù)7”是指互斥事件“7”、“8”、“9”、“10”的和,根據(jù)互斥事件的概率加法公式,可以求得此射手“射擊一次命中環(huán)數(shù)7”的概率解:根據(jù)射手射擊所得的環(huán)數(shù)的分布列,有 P(=7)0.09,P(=8)0.28,P(=9)0.29,P(=10)0.22.所求的概率為 P(7)0.09+0.28+0.29+0.220.88四、課堂練習:某一射手射擊所得環(huán)數(shù)分布列為45678910P002004006009028029022求此射手“射擊一次命中環(huán)數(shù)7”的概率 解:“射擊一次命中環(huán)數(shù)7”是指互斥事件“=7”,“=8”,“=9”,“=10”的和,根據(jù)互斥事件的概率加法公式,有:P(7)=P(=7)+P(=8)+P(=9)+P(=10)=0.88 注:求離散型隨機變量的概率分布的步驟:(1)確定隨機變量的所有可能的值xi(2)求出各取值的概率p(=xi)=pi(3)畫出表格五、小結 :根據(jù)隨機變量的概率分步(分步列),可以求隨機事件的概率;兩點分布是一種常見的離散型隨機變量的分布,它是概率論中最重要的幾種分布之一 (3) 離散型隨機變量的超幾何分布六、課后作業(yè): 七、板書設計(略) 八、課后記:預習提綱:什么叫做離散型隨機變量的數(shù)學期望?它反映了離散型隨機變量的什么特征?離散型隨機變量的數(shù)學期望有什么性質?