高考數(shù)學(xué)復(fù)習(xí):第二章 :第四節(jié) 二次函數(shù)與冪函數(shù)演練知能檢測(cè)
+2019年數(shù)學(xué)高考教學(xué)資料+第四節(jié)二次函數(shù)與冪函數(shù)全盤鞏固1二次函數(shù)yx24xt圖象的頂點(diǎn)在x軸上,則t的值是()A4B4C2D2解析:選A二次函數(shù)圖象的頂點(diǎn)在x軸上,所以424(1)t0,解得t4.2下面給出4個(gè)冪函數(shù)的圖象,則圖象與函數(shù)大致對(duì)應(yīng)的是()Ayx,yx2,yx,yx1Byx3,yx2,yx,yx1Cyx2,yx3,yx,yx1來(lái)源:Dyx,yx,yx2,yx1解析:選B函數(shù)yx2的定義域、值域分別為R和0,),且其圖象關(guān)于y軸對(duì)稱,故該函數(shù)應(yīng)與圖象對(duì)應(yīng);函數(shù)yx的定義域、值域都是0,),故該函數(shù)應(yīng)與圖象對(duì)應(yīng);函數(shù)yx1,該函數(shù)應(yīng)與圖象對(duì)應(yīng),故排除選項(xiàng)C,D.對(duì)于函數(shù)yx,隨著x的增大,函數(shù)圖象向x軸彎曲;而對(duì)于函數(shù)yx3,隨著x的增大,函數(shù)圖象向y軸彎曲,故圖象應(yīng)與函數(shù)yx3對(duì)應(yīng)3已知函數(shù)yax2bxc,如果abc,且abc0,則它的圖象是()A B CD解析:選Dabc,abc0,a0,c0,yax2bxc的開(kāi)口向上,且與y軸的交點(diǎn)(0,c)在負(fù)半軸上4若函數(shù)f(x)x2axb的圖象與x軸的交點(diǎn)為(1,0)和(3,0),則函數(shù)f(x)()A在(,2上單調(diào)遞減,在2,)上單調(diào)遞增B在(,3)上單調(diào)遞增C在1,3上單調(diào)遞增D單調(diào)性不能確定解析:選A由已知可得該函數(shù)的圖象的對(duì)稱軸為x2,又二次項(xiàng)系數(shù)為10,所以f(x)在(,2上是單調(diào)遞減的,在2,)上是單調(diào)遞增的5方程x2ax20在區(qū)間1,5上有解,則實(shí)數(shù)a的取值范圍為()A. B(1,)C. D.解析:選C令f(x)x2ax2,由題意,知f(x)圖象與x軸在1,5上有交點(diǎn),來(lái)源:數(shù)理化網(wǎng)則解得a1.6(2014衢州模擬)已知函數(shù)f(x)ax22ax4(0a3),若x1x2,x1x21a,則()Af(x1)f(x2)Bf(x1)f(x2)Cf(x1)f(x2)Df(x1)與f(x2)的大小不能確定解析:選B函數(shù)的對(duì)稱軸為x1,設(shè)x0,由0a3,得到1,又x1x2,來(lái)源:用單調(diào)性和離對(duì)稱軸的遠(yuǎn)近作判斷,故選B.7若yxa24a9是偶函數(shù),且在(0,)內(nèi)是減函數(shù),則整數(shù)a的值是_解析:函數(shù)在(0,)內(nèi)是減函數(shù),a24a90.2a2,又函數(shù)是偶函數(shù),a24a9是偶數(shù),整數(shù)a的值可以是1,1,3或5.答案:1,1,3或58二次函數(shù)的圖象過(guò)點(diǎn)(0,1),對(duì)稱軸為x2,最小值為1,則它的解析式為_(kāi)解析:依題意可設(shè)f(x)a(x2)21,又其圖象過(guò)點(diǎn)(0,1),4a11,a.f(x)(x2)21.答案:f(x)(x2)219(2014??谀M)二次函數(shù)f(x)的二次項(xiàng)系數(shù)為正,且對(duì)任意x恒有f(2x)f(2x),若f(12x2)f(12xx2),則x的取值范圍是_解析:由f(2x)f(2x),知x2為對(duì)稱軸,由于二次項(xiàng)系數(shù)為正的二次函數(shù)中距對(duì)稱軸較近的點(diǎn)的縱坐標(biāo)較小,|12x22|12xx22|,即|2x21|x22x1|,2x21x22x1,2x0.答案:(2,0)10設(shè)f(x)是定義在R上以2為最小正周期的周期函數(shù)當(dāng)1x1時(shí),yf(x)的表達(dá)式是冪函數(shù),且經(jīng)過(guò)點(diǎn).求函數(shù)在2k1,2k1)(kZ)上的表達(dá)式解:設(shè)在1,1)上,f(x)xn,由點(diǎn)在函數(shù)圖象上,求得n3.令x2k1,2k1),則x2k1,1),f(x2k)(x2k)3.又f(x)周期為2,f(x)f(x2k)(x2k)3.即f(x)(x2k)3(kZ)11已知函數(shù)f(x)x2(2a1)x3.(1)當(dāng)a2,x2,3時(shí),求函數(shù)f(x)的值域;(2)若函數(shù)f(x)在1,3上的最大值為1,求實(shí)數(shù)a的值解:(1)當(dāng)a2時(shí),f(x)x23x3,x2,3,對(duì)稱軸x2,3,f(x)minf3,f(x)maxf(3)15,函數(shù)f(x)的值域?yàn)?(2)函數(shù)f(x)的對(duì)稱軸為x.當(dāng)1,即a時(shí),f(x)maxf(3)6a3,6a31,即a滿足題意;當(dāng)1,即a時(shí),f(x)maxf(1)2a1,2a11,即a1滿足題意綜上可知a或1.12(2014湖州模擬)已知函數(shù)f(x)x22ax5(a1)(1)若f(x)的定義域和值域均是1,a,求實(shí)數(shù)a的值;(2)若f(x)在區(qū)間(,2上是減函數(shù),且對(duì)任意的x1,x21,a1,總有|f(x1)f(x2)|4,求實(shí)數(shù)a的取值范圍解:(1)f(x)(xa)25a2(a1),f(x)在1,a上是減函數(shù)又定義域和值域均為1,a即解得a2.(2)f(x)在區(qū)間(,2上是減函數(shù),a2.又xa1,a1,且(a1)aa1,f(x)maxf(1)62a,f(x)minf(a)5a2.對(duì)任意的x1,x21,a1,總有|f(x1)f(x2)|4,f(x)maxf(x)min4,得1a3.又a2,2a3.故實(shí)數(shù)a的取值范圍是2,3沖擊名校1對(duì)于任意a1,1,函數(shù)f(x)x2(a4)x42a的值恒大于零,那么x的取值范圍是()A(1,3) B(,1)(3,)C(1,2) D(3,)解析:選Bf(x)x2(a4)x42a(x2)ax24x4,令g(a)(x2)ax24x4,來(lái)源:由題意知即來(lái)源:解得x3或x1,故選B.2已知函數(shù)f(x)ax2(3a)x1,g(x)x,若對(duì)于任意實(shí)數(shù)x,f(x)與g(x)至少有一個(gè)為正數(shù),則實(shí)數(shù)a的取值范圍是()A0,3) B3,9) C1,9) D0,9)解析:選D據(jù)題意只需轉(zhuǎn)化為當(dāng)x0時(shí),ax2(3a)x1>0恒成立即可結(jié)合f(x)ax2(3a)x1的圖象,當(dāng)a0時(shí)驗(yàn)證知符合條件;當(dāng)a0時(shí)必有a>0,當(dāng)x0時(shí),函數(shù)在(,0)上單調(diào)遞減,故要使原不等式恒成立,只需f(0)>0即可,解得0a3;當(dāng)x<0時(shí),只需f>0即可,解得3<a<9.綜上所述可得a的取值范圍是0a9.高頻滾動(dòng)1若定義在R上的函數(shù)f(x)滿足:對(duì)任意x1,x2R有f(x1x2)f(x1)f(x2)1,則下列說(shuō)法一定正確的是()Af(x)為奇函數(shù) Bf(x)為偶函數(shù)Cf(x)1為奇函數(shù) Df(x)1為偶函數(shù)解析:選C法一:根據(jù)題意,令x1x20,則f(0)f(0)f(0)1,所以f(0)1.令x1x,x2x,則f(0)f(x)f(x)1,所以f(x)1f(x)10,即f(x)1f(x)1,故f(x)1為奇函數(shù)法二:(特殊函數(shù)法)由條件f(x1x2)f(x1)f(x2)1可取f(x)x1,而f(x)1x是奇函數(shù)2設(shè)yf(x)是定義在R上的偶函數(shù),滿足f(x1)f(x),且在1,0上是增函數(shù),給出下列關(guān)于函數(shù)yf(x)的三個(gè)命題:yf(x)是周期函數(shù);yf(x)的圖象關(guān)于直線x1對(duì)稱;yf(x)在0,1上是增函數(shù)其中正確命題的序號(hào)是_解析:因偶函數(shù)f(x)滿足f(x1)f(x),令xx1,則f(x)f(x1),故f(x1)f(x1),所以f(x)是周期為2的周期函數(shù),正確;又f(1x)f(x1)f(1x),所以yf(x)的圖象關(guān)于直線x1對(duì)稱,正確;又函數(shù)f(x)在1,0上是增函數(shù),則f(x)在0,1是減函數(shù),錯(cuò)誤答案:高考數(shù)學(xué)復(fù)習(xí)精品高考數(shù)學(xué)復(fù)習(xí)精品