五年高考真題高考數(shù)學(xué)復(fù)習(xí) 第六章 第三節(jié) 等比數(shù)列及其前n項(xiàng)和 理全國(guó)通用
-
資源ID:40482585
資源大?。?span id="ck8jqek" class="font-tahoma">118KB
全文頁(yè)數(shù):7頁(yè)
- 資源格式: DOC
下載積分:10積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
五年高考真題高考數(shù)學(xué)復(fù)習(xí) 第六章 第三節(jié) 等比數(shù)列及其前n項(xiàng)和 理全國(guó)通用
高考數(shù)學(xué)精品復(fù)習(xí)資料2019.5第三節(jié)第三節(jié)等比數(shù)列及其前等比數(shù)列及其前 n n 項(xiàng)和項(xiàng)和考點(diǎn)一等比數(shù)列中的運(yùn)算問(wèn)題1(20 xx新課標(biāo)全國(guó),4)已知等比數(shù)列an滿足a13,a1a3a521,則a3a5a7()A21B42C63D84解析設(shè)等比數(shù)列an的公比為q,則由a13,a1a3a521 得 3(1q2q4)21,解得q23(舍去)或q22,于是a3a5a7q2(a1a3a5)22142,故選 B.答案B2(20 xx重慶,2)對(duì)任意等比數(shù)列an,下列說(shuō)法一定正確的是()Aa1,a3,a9成等比數(shù)列Ba2,a3,a6成等比數(shù)列Ca2,a4,a8成等比數(shù)列Da3,a6,a9成等比數(shù)列解析由等比數(shù)列的性質(zhì)得,a3a9a260,因此a3,a6,a9一定成等比數(shù)列,選 D.答案D3(20 xx江西,3)等比數(shù)列x,3x3,6x6,的第四項(xiàng)等于()A24B0C12D24解析由題可得(3x3)2x(6x6),解得x3 或x1(舍),故第四項(xiàng)為24.答案A4(20 xx安徽,14)已知數(shù)列an是遞增的等比數(shù)列,a1a49,a2a38,則數(shù)列an的前n項(xiàng)和等于_解析由等比數(shù)列性質(zhì)知a2a3a1a4,又a2a38,a1a49,所以聯(lián)立方程a1a48,a1a49,解得a11,a48或a18,a41,又?jǐn)?shù)列an為遞增數(shù)列,a11,a48,從而a1q38,q2.數(shù)列an的前n項(xiàng)和為Sn12n122n1.答案2n15(20 xx江蘇,7)在各項(xiàng)均為正數(shù)的等比數(shù)列an中,若a21,a8a62a4,則a6的值是_解析設(shè)等比數(shù)列an的公比為q,q0.則a8a62a4即為a4q4a4q22a4, 解得q22(負(fù)值舍去),又a21,所以a6a2q44.答案46(20 xx浙江,13)設(shè)公比為q(q0)的等比數(shù)列an的前n項(xiàng)和為Sn.若S23a22,S43a42,則q_解析由S23a22,S43a42 作差可得a3a43a43a2,即 2a4a33a20,所以2q2q30,解得q32或q1(舍)答案327(20 xx新課標(biāo)全國(guó),17)已知數(shù)列an滿足a11,an13an1.(1)證明an12 是等比數(shù)列,并求an的通項(xiàng)公式;(2)證明1a11a21an32.證明(1)由an13an1 得an1123an12又a11232,所以an12 是首項(xiàng)為32,公比為 3 的等比數(shù)列an123n2,因此an的通項(xiàng)公式為an3n12.(2)由(1)知1an23n1.因?yàn)楫?dāng)n1 時(shí),3n123n1,所以13n1123n1.于是1a11a21an11313n132113n32.所以1a11a21an0,a3a1116,a1116,log2a10log211629log2255,故選 B.答案B3(20 xx天津,11)設(shè)an是首項(xiàng)為a1,公差為1 的等差數(shù)列,Sn為其前n項(xiàng)和若S1,S2,S4成等比數(shù)列,則a1的值為_(kāi)解析由已知得S1S4S22,即a1(4a16)(2a11)2,解得a112.答案124(20 xx廣東,13)若等比數(shù)列an的各項(xiàng)均為正數(shù),且a10a11a9a122e5,則 lna1lna2lna20_解析由等比數(shù)列的性質(zhì)可知a10a11a9a122e5a1a20e5,于是a1a2a20(e5)10e50,lna1lna2lna20ln(a1a2a20)ln e5050.答案505(20 xx湖南,14)設(shè)Sn為等比數(shù)列an的前n項(xiàng)和,若a11,且 3S1,2S2,S3成等差數(shù)列,則an_解析由 3S1,2S2,S3成等差數(shù)列知,4S23S1S3,可得a33a2,公比q3,故等比數(shù)列通項(xiàng)ana1qn13n1.答案3n16(20 xx北京,11)在等比數(shù)列an中,若a112,a44,則公比q_;|a1|a2|an|_解析q3a4a18,q2,則an12(2)n1,|a1|a2|a3|an|12122n212(12n)122n112.答案22n1127(20 xx新課標(biāo)全國(guó),17)等比數(shù)列an的各項(xiàng)均為正數(shù),且 2a13a21,a239a2a6.(1)求數(shù)列an的通項(xiàng)公式;(2)設(shè)bnlog3a1log3a2log3an,求數(shù)列1bn的前n項(xiàng)和解(1)設(shè)數(shù)列an的公比為q.由a239a2a6,得a239a24,所以q219.由條件可知q0,故q13.由 2a13a21 得 2a13a1q1,所以a113.故數(shù)列an的通項(xiàng)公式為an13n.(2)bnlog3a1log3a2log3an(12n)n(n1)2,故1bn2n(n1)2(1n1n1),1b11b21bn2112 1213 1n1n12nn1.所以數(shù)列1bn的前n項(xiàng)和為2nn1.考點(diǎn)三等比數(shù)列的綜合應(yīng)用1(20 xx安徽,12)數(shù)列an是等差數(shù)列,若a11,a33,a55 構(gòu)成公比為q的等比數(shù)列,則q_解析法一因?yàn)閿?shù)列an是等差數(shù)列,所以a11,a33,a55 也成等差數(shù)列,又a11,a33,a55 構(gòu)成公比為q的等比數(shù)列,所以a11,a33,a55 是常數(shù)列,故q1.法二因?yàn)閿?shù)列an是等差數(shù)列,所以可設(shè)a1td,a3t,a5td,故由已知得(t3)2(td1)(td5),得d24d40,即d2,所以a33a11,即q1.答案12(20 xx湖南,15)設(shè)Sn為數(shù)列an的前n項(xiàng)和,Sn(1)nan12n,nN N*,則:(1)a3_;(2)S1S2S100_解析(1)Sn(1)nan12n.當(dāng)n3 時(shí),a1a2a3a318,當(dāng)n4 時(shí),a1a2a3a4a4116,a1a2a3116,由知a3116.(2)Sn(1)nan12n當(dāng)n為奇數(shù)時(shí),Sn1an112n1,Snan12n,兩式相減得an1an1an12n1,an12n1;當(dāng)n為偶數(shù)時(shí),Sn1an112n1,Snan12n,兩式相減得an1an1an12n1,即an2an112n112n,故an12n1,n為奇數(shù),12n,n為偶數(shù).Sn12n1,n為奇數(shù),0,n為偶數(shù).S1S2S10012212412612100141121001141311210013121001.答案(1)116(2)131210013(20 xx湖北,18)設(shè)等差數(shù)列an的公差為d,前n項(xiàng)和為Sn,等比數(shù)列bn的公比為q,已知b1a1,b22,qd,S10100.(1)求數(shù)列an,bn的通項(xiàng)公式;(2)當(dāng)d1 時(shí),記cnanbn,求數(shù)列cn的前n項(xiàng)和Tn.解(1)由題意有,10a145d100,a1d2,即2a19d20,a1d2,解得a11,d2或a19,d29.故an2n1,bn2n1或an19(2n79) ,bn929n1.(2)由d1,知an2n1,bn2n1,故cn2n12n1,于是Tn1325227239242n12n1,12Tn123225237249252n12n.1可得12Tn21212212n22n12n32n32n,故Tn62n32n1.