高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版理科: 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第3節(jié) 函數(shù)的奇偶性、周期性與對稱性學(xué)案 理 北師大版
高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5第三節(jié)函數(shù)的奇偶性、周期性與對稱性考綱傳真(教師用書獨具)1.了解函數(shù)奇偶性的含義.2.會運用基本初等函數(shù)的圖像分析函數(shù)的奇偶性.3.了解函數(shù)周期性、最小正周期的含義,會判斷、應(yīng)用簡單函數(shù)的周期性(對應(yīng)學(xué)生用書第13頁)基礎(chǔ)知識填充1奇函數(shù)、偶函數(shù)圖像關(guān)于原點對稱的函數(shù)叫作奇函數(shù)在奇函數(shù)f(x)中,f(x)和f(x)的絕對值相等,符號相反即f(x)f(x),反之,滿足f(x)f(x)的函數(shù)一定是奇函數(shù)圖像關(guān)于y軸對稱的函數(shù)叫作偶函數(shù)在偶函數(shù)f(x)中,f(x)f(x),反之,滿足f(x)f(x)的函數(shù)一定是偶函數(shù)2奇(偶)函數(shù)的性質(zhì)(1)奇函數(shù)在關(guān)于原點對稱的區(qū)間上的單調(diào)性相同;偶函數(shù)在關(guān)于原點的區(qū)間上的單調(diào)性相反(填“相同”“相反”)(2)在公共定義域內(nèi)兩個奇函數(shù)和函數(shù)是奇函數(shù),兩個奇函數(shù)的積函數(shù)是偶函數(shù)兩個偶函數(shù)的和函數(shù)、積函數(shù)是偶函數(shù)一個奇函數(shù),一個偶函數(shù)的積函數(shù)是奇函數(shù)(3)若函數(shù)f(x)是奇函數(shù)且x0處有定義,則f(0)0.3函數(shù)的周期性(1)周期函數(shù):對于函數(shù)f(x),如果存在非零常數(shù)T,對定義域內(nèi)的任意一個x,都有f(xT)f(x),那么就稱函數(shù)f(x)為周期函數(shù),稱T為這個函數(shù)的周期(2)最小正周期:如果在周期函數(shù)f(x)的所有周期中存在一個最小的正數(shù),那么這個最小正數(shù)就叫作f(x)的最小正周期4函數(shù)的對稱性常見的結(jié)論(1)函數(shù)yf(x)關(guān)于x對稱f(ax)f(bx)f(x)f(bax)特殊:函數(shù)yf(x)關(guān)于xa對稱f(ax)f(ax)f(x)f(2ax);函數(shù)yf(x)關(guān)于x0對稱f(x)f(x)(即為偶函數(shù))(2)函數(shù)yf(x)關(guān)于點(a,b)對稱f(ax)f(ax)2bf(2ax)f(x)2b.特殊:函數(shù)yf(x)關(guān)于點(a,0)對稱f(ax)f(ax)0f(2ax)f(x)0;函數(shù)yf(x)關(guān)于(0,0)對稱f(x)f(x)0(即為奇函數(shù))(3)yf(xa)是偶函數(shù)函數(shù)yf(x)關(guān)于直線xa對稱;yf(xa)是奇函數(shù)函數(shù)yf(x)關(guān)于點(a,0)對稱知識拓展1函數(shù)奇偶性常用結(jié)論(1)若奇函數(shù)f(x)在x0處有定義,則f(0)0.(2)如果函數(shù)f(x)是偶函數(shù),那么f(x)f(|x|)(3)奇函數(shù)在兩個對稱的區(qū)間上具有相同的單調(diào)性;偶函數(shù)在兩個對稱的區(qū)間上具有相反的單調(diào)性(4)yf(xa)是奇函數(shù),則f(xa)f(xa);yf(xa)是偶函數(shù),則f(xa)f(xa)2函數(shù)周期性常用結(jié)論對f(x)定義域內(nèi)任一自變量的值x:(1)若f(xa)f(x),則T2a(a0)(2)若f(xa),則T2a(a0)(3)若f(xa),則T2a(a0)基本能力自測1(思考辨析)判斷下列結(jié)論的正誤(正確的打“”,錯誤的打“×”)(1)函數(shù)yx2,x(0,)是偶函數(shù)()(2)偶函數(shù)圖像不一定過原點,奇函數(shù)的圖像一定過原點()(3)若函數(shù)yf(xa)是偶函數(shù),則函數(shù)yf(x)關(guān)于直線xa對稱()(4)若函數(shù)yf(xb)是奇函數(shù),則函數(shù)yf(x)關(guān)于點(b,0)中心對稱()(5)函數(shù)f(x)在定義域上滿足f(xa)f(x),則f(x)是周期為2a(a0)的周期函數(shù)()答案(1)×(2)×(3)(4)(5)2已知f(x)ax2bx是定義在a1,2a上的偶函數(shù),那么ab的值是()AB.C.DB依題意b0,且2a(a1),b0且a,則ab.3(教材改編)下列函數(shù)為偶函數(shù)的是()Af(x)x1Bf(x)x2xCf(x)2x2xDf(x)2x2xDD中,f(x)2x2xf(x),f(x)為偶函數(shù)4已知定義在R上的奇函數(shù)f(x)滿足f(x4)f(x),則f(8)的值為()A1B0C1D2Bf(x)為定義在R上的奇函數(shù),f(0)0,又f(x4)f(x),f(8)f(0)0.5(20xx·全國卷)已知函數(shù)f(x)是定義在R上的奇函數(shù),當x(,0)時,f(x)2x3x2,則f(2)_.12法一:令x0,則x0.f(x)2x3x2.函數(shù)f(x)是定義在R上的奇函數(shù),f(x)f(x)f(x)2x3x2(x0)f(2)2×232212.法二:f(2)f(2)2×(2)3(2)212.(對應(yīng)學(xué)生用書第14頁)函數(shù)奇偶性的判斷判斷下列函數(shù)的奇偶性:(1)f(x);(2)f(x)ln(x);(3)f(x)(x1);(4)f(x)解(1)由得x±1,f(x)的定義域為1,1又f(1)f(1)0,f(1)f(1)0,f(x)±f(x)f(x)既是奇函數(shù)又是偶函數(shù)(2)f(x)的定義域為R,f(x)(lnx)lnln(x)f(x),f(x)為奇函數(shù)(3)由0可得函數(shù)的定義域為(1,1函數(shù)定義域不關(guān)于原點對稱,函數(shù)為非奇非偶函數(shù)(4)易知函數(shù)的定義域為(,0)(0,),關(guān)于原點對稱,又當x0時,f(x)x2x,則當x0時,x0,故f(x)x2xf(x);當x0時,f(x)x2x,則當x0時,x0,故f(x)x2xf(x),故原函數(shù)是偶函數(shù)規(guī)律方法判斷函數(shù)奇偶性的三種常用方法(1)定義法(2)圖像法(3)性質(zhì)法在公共定義域內(nèi)有:奇±奇奇,偶±偶偶,奇×奇偶,偶×偶偶,奇×偶奇跟蹤訓(xùn)練(1)(20xx·深圳二調(diào))下列函數(shù)中,既是偶函數(shù)又在(0,1)上單調(diào)遞增的是()Aycos xByCy2|x|Dy|lg x|(2)設(shè)函數(shù)f(x),g(x)的定義域都為R,且f(x)是奇函數(shù),g(x)是偶函數(shù),則下列結(jié)論中正確的是()Af(x)g(x)是偶函數(shù)B|f(x)|g(x)是奇函數(shù)Cf(x)|g(x)|是奇函數(shù)D|f(x)g(x)|是奇函數(shù)(1)C(2)C(1)由于對應(yīng)函數(shù)是偶函數(shù),可以排除選項B,D;對應(yīng)函數(shù)在(0,1)上單調(diào)遞增,可以排除選項A;y2|x|是偶函數(shù),又在(0,1)上單調(diào)遞增,選項C正確,故選C.(2)A:令h(x)f(x)·g(x),則h(x)f(x)·g(x)f(x)·g(x)h(x),h(x)是奇函數(shù),A錯B:令h(x)|f(x)|g(x),則h(x)|f(x)|g(x)|f(x)|·g(x)|f(x)|g(x)h(x),h(x)是偶函數(shù),B錯C:令h(x)f(x)|g(x)|,則h(x)f(x)|g(x)|f(x)·|g(x)|h(x),h(x)是奇函數(shù),C正確D:令h(x)|f(x)·g(x)|,則h(x)|f(x)·g(x)|f(x)·g(x)|f(x)·g(x)|h(x),h(x)是偶函數(shù),D錯函數(shù)的周期性(1)若函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當0<x<1時,f(x)4x,則ff(2)_. 【導(dǎo)學(xué)號:79140031】(2)已知定義在R上的函數(shù)滿足f(x2),x(0,2時,f(x)2x1.則f(1)f(2)f(3)f(2 019)的值為_(1)2(2)1 347(1)f(x)是周期為2的奇函數(shù),fff42,f(2)f(0)0,ff(2)202.(2)f(x2),f(x4)f(x),函數(shù)yf(x)的周期T4.又x(0,2時,f(x)2x1,f(1)1,f(2)3,f(3)1,f(4).f(1)f(2)f(3)f(2 019)504f(1)f(2)f(3)f(4)f(504×41)f(504×42)f(504×43)5041311 347. 規(guī)律方法(1)判斷函數(shù)的周期只需證明f(xT)f(x)(T0)便可證明函數(shù)是周期函數(shù),且周期為T,函數(shù)的周期性常與函數(shù)的其他性質(zhì)綜合命題.,(2)根據(jù)函數(shù)的周期性,可以由函數(shù)局部的性質(zhì)得到函數(shù)的整體性質(zhì),在解決具體問題時,要注意結(jié)論:若T是函數(shù)的周期,則kT(kZ且k0)也是函數(shù)的周期.跟蹤訓(xùn)練已知函數(shù)f(x)是周期為2的奇函數(shù),當x(0,1時,f(x)lg(x1),則flg 18_.1由函數(shù)f(x)是周期為2的奇函數(shù),得fffflglg,故flg 18lglg 18lg 101.函數(shù)性質(zhì)的綜合應(yīng)用角度1單調(diào)性與奇偶性結(jié)合(20xx·全國卷)函數(shù)f(x)在(,)單調(diào)遞減,且為奇函數(shù)若f(1)1,則滿足1f(x2)1的x的取值范圍是()A2,2B1,1C0,4D1,3Df(x)為奇函數(shù),f(x)f(x)f(1)1,f(1)f(1)1.故由1f(x2)1,得f(1)f(x2)f(1)又f(x)在(,)單調(diào)遞減,1x21,1x3.故選D.角度2奇偶性與周期性結(jié)合(20xx·山東高考)已知f(x)是定義在R上的偶函數(shù),且f(x4)f(x2)若當x3,0時,f(x)6x,則f(919)_.6f(x4)f(x2),f(x2)4)f(x2)2),即f(x6)f(x),f(x)是周期為6的周期函數(shù),f(919)f(153×61)f(1)又f(x)是定義在R上的偶函數(shù),f(1)f(1)6,即f(919)6.角度3單調(diào)性、奇偶性與周期性結(jié)合(1)已知定義在R上的奇函數(shù)f(x)滿足f(x4)f(x),且在區(qū)間0,2上是增函數(shù),則()Af(25)f(11)f(80)Bf(80)f(11)f(25)Cf(11)f(80)f(25)Df(25)f(80)f(11)(2)已知定義在實數(shù)上的偶函數(shù)f(x)滿足:f(x4)f(x)f(2),當x0,2時,yf(x)遞減,下列四個命題中正確命題的序號是_f(2)0;x4是yf(x)圖像的一條對稱軸;yf(x)在8,10單增;f(x)是周期函數(shù);若方程f(x)m在6,2上有兩根x1,x2,則x1x28.(1)D(2)(1)因為f(x)滿足f(x4)f(x),所以f(x8)f(x),所以函數(shù)f(x)是以8為周期的周期函數(shù),則f(25)f(1),f(80)f(0),f(11)f(3)由f(x)是定義在R上的奇函數(shù),且滿足f(x4)f(x),得f(11)f(3)f(1)f(1)因為f(x)在區(qū)間0,2上是增函數(shù),f(x)在R上是奇函數(shù),所以f(x)在區(qū)間2,2上是增函數(shù),所以f(1)f(0)f(1),即f(25)f(80)f(11)(2)令x2得f(24)f(2)f(2),解得f(2)0,故f(x4)f(x),所以f(x)的周期為4,又f(x)為偶函數(shù),y軸是f(x)的對稱軸,故x4是yf(x)的一條對稱軸,由函數(shù)的對稱性和周期可判斷yf(x)在8,10上單調(diào)遞增,因6,2為f(x)的一個周期,x4為f(x)在6,2上的對稱軸,故x1x28,因此正確,錯誤規(guī)律方法函數(shù)性質(zhì)綜合應(yīng)用問題的常見類型及解題方法(1)函數(shù)單調(diào)性與奇偶性結(jié)合.注意函數(shù)單調(diào)性及奇偶性的定義,以及奇、偶函數(shù)圖像的對稱性.(2)周期性與奇偶性結(jié)合.此類問題多考查求值問題,常利用奇偶性及周期性進行交換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.(3)周期性、奇偶性與單調(diào)性結(jié)合.解決此類問題通常先利用周期性轉(zhuǎn)化自變量所在的區(qū)間,然后利用奇偶性和單調(diào)性求解.)跟蹤訓(xùn)練(1)(20xx·天津高考)已知奇函數(shù)f(x)在R上是增函數(shù)若af,bf(log2 4.1),cf(20.8),則a,b,c的大小關(guān)系為()Aa<b<cBb<a<cCc<b<aDc<a<b(2)(20xx·青島質(zhì)檢)定義在R上的奇函數(shù)f(x)滿足f(2x)f(2x),且f(1)1,則f(2 017)_. 【導(dǎo)學(xué)號:79140032】A0B1C1D2(3)偶函數(shù)yf(x)的圖像關(guān)于直線x2對稱,f(3)3,則f(1)_.(1)C(2)B(3)3(1)f(x)在R上是奇函數(shù),afff(log25)又f(x)在R上是增函數(shù),且log25>log24.1>log242>20.8,f(log25)>f(log24.1)>f(20.8),a>b>c.故選C.(2)由題意得f(x4)f(2(x2)f(x)f(x),f(x8)f(x4)f(x),函數(shù)f(x)以8為周期,f(2 017)f(1)1,故選B.(3)函數(shù)yf(x)的圖像關(guān)于直線x2對稱,f(2x)f(2x),f(3)f(1)3,又yf(x)是偶函數(shù),f(1)f(1)3.