浙江高考數(shù)學(xué)二輪復(fù)習(xí)教師用書(shū):第1部分 重點(diǎn)強(qiáng)化專題 專題4 突破點(diǎn)8 空間幾何體表面積或體積的求解 Word版含答案
-
資源ID:40251709
資源大小:959.50KB
全文頁(yè)數(shù):11頁(yè)
- 資源格式: DOC
下載積分:10積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
浙江高考數(shù)學(xué)二輪復(fù)習(xí)教師用書(shū):第1部分 重點(diǎn)強(qiáng)化專題 專題4 突破點(diǎn)8 空間幾何體表面積或體積的求解 Word版含答案
高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5專題四立體幾何建知識(shí)網(wǎng)絡(luò)明內(nèi)在聯(lián)系高考點(diǎn)撥立體幾何專題是浙江新高考中當(dāng)仁不讓的熱點(diǎn)之一,常以“兩小一大”呈現(xiàn),小題主要考查三視圖與空間幾何體的體積(特別是與球有關(guān)的體積)和空間位置關(guān)系及空間角,一大題??伎臻g位置關(guān)系的證明與空間角、距離的探求本專題主要從“空間幾何體表面積或體積的求解”“空間中的平行與垂直關(guān)系”“立體幾何中的向量方法”三大角度進(jìn)行典例剖析,引領(lǐng)考生明確考情并提升解題技能突破點(diǎn)8空間幾何體表面積或體積的求解 (對(duì)應(yīng)學(xué)生用書(shū)第29頁(yè))核心知識(shí)提煉提煉1 求解幾何體的表面積或體積(1)對(duì)于規(guī)則幾何體,可直接利用公式計(jì)算(2)對(duì)于不規(guī)則幾何體,可采用割補(bǔ)法求解;對(duì)于某些三棱錐,有時(shí)可采用等體積轉(zhuǎn)換法求解(3)求解旋轉(zhuǎn)體的表面積和體積時(shí),注意圓柱的軸截面是矩形,圓錐的軸截面是等腰三角形,圓臺(tái)的軸截面是等腰梯形的應(yīng)用. 提煉2 球與幾何體的外接與內(nèi)切 (1)正四面體與球:設(shè)正四面體的棱長(zhǎng)為a ,由正四面體本身的對(duì)稱性,可知其內(nèi)切球和外接球的球心相同,則內(nèi)切球的半徑ra,外接球的半徑Ra.(2)正方體與球:設(shè)正方體ABCD­A1B1C1D1的棱長(zhǎng)為a,O為其對(duì)稱中心,E,F(xiàn),H,G分別為AD,BC,B1C1,A1D1的中點(diǎn),J為HF的中點(diǎn),如圖8­1所示圖8­1正方體的內(nèi)切球:截面圖為正方形EFHG的內(nèi)切圓,故其內(nèi)切球的半徑為OJ;正方體的棱切球:截面圖為正方形EFHG的外接圓,故其棱切球的半徑為OG;正方體的外接球:截面圖為矩形ACC1A1的外接圓,故其外接球的半徑為OA1.高考真題回訪回訪1空間幾何體的結(jié)構(gòu)及三視圖1(20xx·浙江高考)如圖8­2,斜線段AB與平面所成的角為60°,B為斜足,平面上的動(dòng)點(diǎn)P滿足PAB30°,則點(diǎn)P的軌跡是()圖8­2A直線B拋物線C橢圓D雙曲線的一支C因?yàn)镻AB30°,所以點(diǎn)P的軌跡為以AB為軸線,PA為母線的圓錐面與平面的交線,且平面與圓錐的軸線斜交,故點(diǎn)P的軌跡為橢圓2(20xx·浙江高考)某幾何體的三視圖(單位:cm)如圖8­3所示,則該幾何體的體積是()圖8­3A72 cm3B90 cm3C108 cm3D138 cm3B該幾何體為一個(gè)組合體,左側(cè)為三棱柱,右側(cè)為長(zhǎng)方體,如圖所示VV三棱柱V長(zhǎng)方體×4×3×34×3×6187290(cm3)3(20xx·浙江高考)已知某幾何體的三視圖(單位:cm)如圖8­4所示,則該幾何體的體積是()圖8­4A108 cm3B100 cm3C92 cm3D84 cm3B此幾何體為一個(gè)長(zhǎng)方體ABCD­A1B1C1D1被截去了一個(gè)三棱錐A­DEF,如圖所示,其中這個(gè)長(zhǎng)方體的長(zhǎng)、寬、高分別為6、3、6,故其體積為6×3×6108(cm3)三棱錐的三條棱AE、AF、AD的長(zhǎng)分別為4、4、3,故其體積為××48(cm3),所以所求幾何體的體積為1088100(cm3)回訪2幾何體的表面積或體積4(20xx·浙江高考)某幾何體的三視圖如圖8­5所示(單位:cm),則該幾何體的體積(單位:cm3)是()圖8­5A.1B.3 C.1D.3A由幾何體的三視圖可知,該幾何體是一個(gè)底面半徑為1,高為3的圓錐的一半與一個(gè)底面為直角邊長(zhǎng)是的等腰直角三角形,高為3的三棱錐的組合體,該幾何體的體積V××12×3××××31.故選A.5(20xx·浙江高考)某幾何體的三視圖如圖8­6所示(單位:cm),則該幾何體的體積是()圖8­6A8 cm3B12 cm3C. cm3D. cm3C由三視圖可知,該幾何體是由一個(gè)正方體和一個(gè)正四棱錐構(gòu)成的組合體下面是棱長(zhǎng)為2 cm的正方體,體積V12×2×28(cm3);上面是底面邊長(zhǎng)為2 cm,高為2 cm的正四棱錐,體積V2×2×2×2(cm3),所以該幾何體的體積VV1V2(cm3)6(20xx·浙江高考)某幾何體的三視圖(單位:cm)如圖8­7所示,則此幾何體的表面積是()圖8­7A90 cm2B129 cm2C132 cm2D138 cm2D該幾何體如圖所示,長(zhǎng)方體的長(zhǎng)、寬、高分別為6 cm,4 cm,3 cm,直三棱柱的底面是直角三角形,邊長(zhǎng)分別為3 cm,4 cm,5 cm,所以表面積S2×(4×64×3)3×63×39939138(cm2)7(20xx·浙江高考)某幾何體的三視圖如圖8­8所示(單位:cm),則該幾何體的表面積是_cm2,體積是_cm3.圖8­88040由三視圖還原幾何體如圖所示,下面長(zhǎng)方體的長(zhǎng)、寬都是4,高為2;上面正方體的棱長(zhǎng)為2.所以該幾何體的表面積為(4×42×42×4)×22×2×480(cm2);體積為4×4×22340(cm3)8(20xx·浙江高考)若某幾何體的三視圖(單位:cm)如圖8­9所示,則此幾何體的體積等于_cm3.圖8­924由三視圖可知該幾何體為一個(gè)直三棱柱被截去了一個(gè)小三棱錐,如圖所示三棱柱的底面為直角三角形,且直角邊長(zhǎng)分別為3和4,三棱柱的高為5,故其體積V1×3×4×530(cm3),小三棱錐的底面與三棱柱的上底面相同,高為3,故其體積V2××3×4×36(cm3),所以所求幾何體的體積為30624(cm3) (對(duì)應(yīng)學(xué)生用書(shū)第31頁(yè))熱點(diǎn)題型1幾何體的表面積或體積題型分析:解決此類題目,準(zhǔn)確轉(zhuǎn)化是前提,套用公式是關(guān)鍵,求解時(shí)先根據(jù)條件確定幾何體的形狀,再套用公式求解.【例1】(1)如圖8­10,某幾何體的三視圖是三個(gè)半徑相等的圓及每個(gè)圓中兩條互相垂直的半徑若該幾何體的體積是,則它的表面積是()圖8­10A17B18C20D28(2)如圖8­11,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫(huà)出的是某多面體的三視圖,則該多面體的表面積為() 【導(dǎo)學(xué)號(hào):68334098】圖8­11A1836B5418C90D81(1)A(2)B(1)由幾何體的三視圖可知,該幾何體是一個(gè)球體去掉上半球的,得到的幾何體如圖設(shè)球的半徑為R,則R3×R3,解得R2.因此它的表面積為×4R2R217.故選A.(2)由三視圖可知該幾何體是底面為正方形的斜四棱柱,其中有兩個(gè)側(cè)面為矩形,另兩個(gè)側(cè)面為平行四邊形,則表面積為(3×33×63×3)×25418.故選B.方法指津1求解幾何體的表面積及體積的技巧(1)求幾何體的表面積及體積問(wèn)題,可以多角度、多方位地考慮,熟記公式是關(guān)鍵所在求三棱錐的體積,等體積轉(zhuǎn)化是常用的方法,轉(zhuǎn)化原則是其高易求,底面放在已知幾何體的某一面上(2)求不規(guī)則幾何體的體積,常用分割或補(bǔ)形的思想,將不規(guī)則幾何體轉(zhuǎn)化為規(guī)則幾何體以易于求解2根據(jù)幾何體的三視圖求其表面積與體積的三個(gè)步驟(1)根據(jù)給出的三視圖判斷該幾何體的形狀(2)由三視圖中的大小標(biāo)示確定該幾何體的各個(gè)度量(3)套用相應(yīng)的面積公式與體積公式計(jì)算求解變式訓(xùn)練1(1)某幾何體的三視圖如圖8­12所示,則該幾何體的體積為()圖8­12A.B5C5D.(2)(20xx·溫州市普通高中4月高考模擬考試12)某幾何體的三視圖如圖8­13所示,則此幾何體的體積是_,表面積是_. 【導(dǎo)學(xué)號(hào):68334099】圖8­13(1)D(2)622(1)由三視圖知該幾何體是由一個(gè)長(zhǎng)方體,一個(gè)三棱錐和一個(gè)圓柱組成,故該幾何體的體積為V2×1×2××1×1×2××12×2.(2)由三視圖知,該幾何體為四棱錐,其底面是邊長(zhǎng)為2的正方形,高為2,所以該幾何體的體積V×22×2,表面積S2×2×2×2×2×22××2×622.熱點(diǎn)題型2球與幾何體的切、接問(wèn)題題型分析:與球有關(guān)的表面積或體積求解,其核心本質(zhì)是半徑的求解,這也是此類問(wèn)題求解的主線,考生要時(shí)刻謹(jǐn)記.先根據(jù)幾何體的三視圖確定其結(jié)構(gòu)特征與數(shù)量特征,然后確定其外接球的球心,進(jìn)而確定球的半徑,最后代入公式求值即可;也可利用球的性質(zhì)球面上任意一點(diǎn)對(duì)直徑所張的角為直角,然后根據(jù)幾何體的結(jié)構(gòu)特征構(gòu)造射影定理求解.【例2】(1)一個(gè)幾何體的三視圖如圖8­14所示,其中正視圖是正三角形,則該幾何體的外接球的表面積為()圖8­14A.B.C.D.(2)在封閉的直三棱柱ABC­A1B1C1內(nèi)有一個(gè)體積為V的球若ABBC,AB6,BC8,AA13,則V的最大值是() 【導(dǎo)學(xué)號(hào):68334100】A4B.C6D.(1)D(2)B(1)法一由三視圖可知,該幾何體是如圖所示的三棱錐S ­ ABC,其中HS是三棱錐的高,由三視圖可知HS2,HAHBHC2,故H為ABC外接圓的圓心,該圓的半徑為2.由幾何體的對(duì)稱性可知三棱錐S­ABC外接球的球心O在直線HS上,連接OB.設(shè)球的半徑為R,則球心O到ABC外接圓的距離為OH|SHOS|2R|,由球的截面性質(zhì)可得ROB,解得R,所以所求外接球的表面積為4R24×.故選D.法二由三視圖可知,該幾何體是如圖所示的三棱錐S ­ABC,其中HS是三棱錐的高,由側(cè)視圖可知HS2,由正視圖和側(cè)視圖可得HAHBHC2.由幾何體的對(duì)稱性可知三棱錐外接球的球心O在HS上,延長(zhǎng)SH交球面于點(diǎn)P,則SP就是球的直徑,由點(diǎn)A在球面上可得SAAP.又SH平面ABC,所以SHAH.在RtASH中,SA4.設(shè)球的半徑為R,則SP2R,在RtSPA中,由射影定理可得SA2SH×SP,即422×2R,解得R,所以所求外接球的表面積為4R24×.故選D.(2)由題意得要使球的體積最大,則球與直三棱柱的若干面相切設(shè)球的半徑為R.因?yàn)锳BC的內(nèi)切圓半徑為2,所以R2.又2R3,所以R,所以Vmax3.故選B.方法指津解決球與幾何體的切、接問(wèn)題的關(guān)鍵在于確定球的半徑與幾何體的度量之間的關(guān)系,這就需要靈活利用球的截面性質(zhì)以及組合體的截面特征來(lái)確定.對(duì)于旋轉(zhuǎn)體與球的組合體,主要利用它們的軸截面性質(zhì)建立相關(guān)數(shù)據(jù)之間的關(guān)系;而對(duì)于多面體,應(yīng)抓住多面體的結(jié)構(gòu)特征靈活選擇過(guò)球心的截面,把多面體的相關(guān)數(shù)據(jù)和球的半徑在截面圖形中體現(xiàn)出來(lái).變式訓(xùn)練2(1)已知直三棱柱ABC­A1B1C1的6個(gè)頂點(diǎn)都在球O 的球面上,若AB3,AC1,BAC60°,AA12,則該三棱柱的外接球的體積為() 【導(dǎo)學(xué)號(hào):68334101】 A.B.C.D20(2)(名師押題)一幾何體的三視圖如圖8­15(網(wǎng)格中每個(gè)正方形的邊長(zhǎng)為1),若這個(gè)幾何體的頂點(diǎn)都在球O的表面上,則球O的表面積是_圖8­15(1)B(2)20(1)設(shè)A1B1C1的外心為O1,ABC的外心為O2,連接O1O2,O2B,OB,如圖所示由題意可得外接球的球心O為O1O2的中點(diǎn)在ABC中,由余弦定理可得BC2AB2AC22AB×ACcosBAC32122×3×1×cos 60°7,所以BC.由正弦定理可得ABC外接圓的直徑2r2O2B,所以r.而球心O到截面ABC的距離dOO2AA11,設(shè)直三棱柱ABC­A1B1C1的外接球半徑為R,由球的截面性質(zhì)可得R2d2r2122,故R,所以該三棱柱的外接球的體積為VR3.故選B.(2)由三視圖知該幾何體是一個(gè)四棱錐,如圖所示,其底面ABCD是長(zhǎng)、寬分別為4和2的矩形,高為2,且側(cè)面SDC與底面ABCD垂直,且頂點(diǎn)S在底面上的射影為該側(cè)面上的底面邊的中點(diǎn)由該幾何體的結(jié)構(gòu)特征知球心在過(guò)底面中心O且與底面垂直的直線上,同時(shí)在過(guò)側(cè)面SDC的外接圓圓心且與側(cè)面SDC垂直的直線上因?yàn)镾DC為直角三角形,所以球心就為底面ABCD的中心O,所以外接球的半徑為RAC,故外接球的表面積為4R220.