2019高考數(shù)學三輪沖刺 大題提分 大題精做8 圓錐曲線:定點、定值問題 文.docx
-
資源ID:3903109
資源大小:20.20KB
全文頁數(shù):6頁
- 資源格式: DOCX
下載積分:9.9積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
2019高考數(shù)學三輪沖刺 大題提分 大題精做8 圓錐曲線:定點、定值問題 文.docx
大題精做8 圓錐曲線:定點、定值問題2019甘肅聯(lián)考已知橢圓的右焦點為,上頂點為,直線的斜率為,且原點到直線的距離為(1)求橢圓的標準方程;(2)若不經(jīng)過點的直線與橢圓交于,兩點,且與圓相切試探究的周長是否為定值,若是,求出定值;若不是,請說明理由【答案】(1);(2)【解析】(1)由題可知,則,直線的方程為,即,所以,解得,又,所以橢圓的標準方程為(2)因為直線與圓相切,所以,即設,聯(lián)立,得,所以,所以又,所以因為,同理所以,所以的周長是,則的周長為定值12019安慶期末已知橢圓過點,焦距長,過點的直線交橢圓于,兩點(1)求橢圓的方程;(2)已知點,求證:為定值22019東莞期末已知橢圓的中心在坐標原點,左右焦點分別為和,且橢圓經(jīng)過點(1)求橢圓的標準方程;(2)過橢圓的右頂點作兩條相互垂直的直線,分別與橢圓交于點,(均異于點),求證:直線過定點,并求出該定點的坐標32019周口期末已知過原點的兩條互相垂直的直線與拋物線相交于不同于原點的兩點,且軸,的面積為16(1)求拋物線的標準方程;(2)已知點,為拋物線上不同的三點,若,試問:直線是否過定點?若過定點,求出定點坐標;若不過定點,請說明理由1【答案】(1);(2)【解析】(1)由條件焦距為,知,從而將代入方程,可得,故橢圓方程為(2)當直線的斜率不為0時,設直線交橢圓于,由,可得,化簡得,當直線斜率為0時,即證為定值,且為2【答案】(1);(2)見解析【解析】(1)設橢圓的標準方程為,所以橢圓的標準方程為(2)直線斜率存在,設直線,聯(lián)立方程,消去得,又,由,得,即,解得,且均滿足,當時,直線的方程為,直線過定點,與已知矛盾;當時,直線的方程為,直線過定點由橢圓的對稱性所得,當直線,的傾斜角分別為,易得直線,直線,分別與橢圓交于點,此時直線斜率不存在,也過定點,綜上所述,直線恒過定點3【答案】(1);(2)過定點【解析】(1)不妨設點在第一象限,由題意知,直線,的傾斜角分別為,則直線,的方程分別為,代入拋物線方程得,的坐標分別為,解得,故拋物線的標準方程為(2)由(1)可得點由題意可設直線的方程為聯(lián)立,得則,同理可得,直線的方程為,即故直線過定點