歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOCX文檔下載  

2019屆高考數(shù)學(xué)總復(fù)習(xí) 模塊七 選考模塊 第21講 坐標(biāo)系與參數(shù)方程學(xué)案 理.docx

  • 資源ID:3852095       資源大?。?span id="elhuotj" class="font-tahoma">93.21KB        全文頁數(shù):10頁
  • 資源格式: DOCX        下載積分:9.9積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。

2019屆高考數(shù)學(xué)總復(fù)習(xí) 模塊七 選考模塊 第21講 坐標(biāo)系與參數(shù)方程學(xué)案 理.docx

第21講坐標(biāo)系與參數(shù)方程1.2018全國卷在直角坐標(biāo)系xOy中,曲線C1的方程為y=k|x|+2.以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為2+2cos -3=0.(1)求C2的直角坐標(biāo)方程;(2)若C1與C2有且僅有三個公共點,求C1的方程.試做2.2017全國卷在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為x=3cos,y=sin(為參數(shù)),直線l的參數(shù)方程為x=a+4t,y=1-t(t為參數(shù)).(1)若a=-1,求C與l的交點坐標(biāo);(2)若C上的點到l距離的最大值為17,求a.試做命題角度坐標(biāo)系與參數(shù)方程(1)根據(jù)x=cos ,y=sin 以及2=x2+y2可將極坐標(biāo)方程化為直角坐標(biāo)方程;(2)化參數(shù)方程為普通方程的關(guān)鍵是消參,可以利用加減消元、平方消元、代入等方法實現(xiàn);(3)解決坐標(biāo)系與參數(shù)方程中求曲線交點、距離、線段長等幾何問題時,一般方法是先分別化為直角坐標(biāo)方程或普通方程再求解,也可直接利用極坐標(biāo)的幾何意義求解,解題時要結(jié)合題目自身特點,靈活選擇方程的類型.解答1極坐標(biāo)與簡單曲線的極坐標(biāo)方程1 在平面直角坐標(biāo)系xOy中,已知直線l:x+3y=53,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為=4sin .(1)求直線l的極坐標(biāo)方程和圓C的直角坐標(biāo)方程;(2)射線OP:=6與圓C的交點為O,A,與直線l的交點為B,求線段AB的長. 聽課筆記 【考場點撥】進行極坐標(biāo)方程與直角坐標(biāo)方程互化的關(guān)鍵是熟練掌握互化公式:x=cos ,y=sin ,2=x2+y2.方程的兩邊同乘(或同除以)及方程兩邊平方是常用的變形方法.【自我檢測】在直角坐標(biāo)系xOy中,圓C1:(x-2)2+(y-4)2=20,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2:=3(R).(1)求C1的極坐標(biāo)方程和C2的直角坐標(biāo)方程;(2)若曲線C3的極坐標(biāo)方程為=6(R),設(shè)C2與C1的交點為O,M,C3與C1的交點為O,N,求OMN的面積.解答2簡單曲線的參數(shù)方程2 已知直線l的參數(shù)方程為x=1+tcos,y=tsin(t為參數(shù)),曲線C的參數(shù)方程為x=3cos,y=sin(為參數(shù)),且直線l交曲線C于A,B兩點.(1)將曲線C的參數(shù)方程化為普通方程,并求當(dāng)=4時,|AB|的值;(2)已知點P(1,0),當(dāng)直線l的傾斜角變化時,求|PA|PB|的取值范圍.聽課筆記 【考場點撥】(1)參數(shù)方程的實質(zhì)是將曲線上每一點的橫、縱坐標(biāo)分別用同一個參數(shù)表示出來,所以有時處理曲線上與點的坐標(biāo)有關(guān)的問題時,用參數(shù)方程求解非常方便;(2)充分利用直線、圓、橢圓等參數(shù)方程中參數(shù)的幾何意義,在解題時能夠事半功倍.【自我檢測】已知曲線C:4x29+y216=1,直線l:x=3+t,y=5-2t(t為參數(shù)).(1)寫出曲線C的參數(shù)方程和直線l的普通方程;(2)設(shè)曲線C上任意一點P到直線l的距離為d,求d的最大值與最小值.解答3極坐標(biāo)方程與參數(shù)方程的綜合應(yīng)用3 在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為x=2+22t,y=-1+22t(t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為=22acos+4a>56.(1)分別寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)已知點P(2,-1),直線l與曲線C相交于M,N兩點,若|MN|2=6|PM|PN|,求a的值.聽課筆記 【考場點撥】參數(shù)方程主要通過代入法或者利用已知恒等式(如cos2+sin2=1等三角恒等式)消去參數(shù)化為普通方程,通過選取相應(yīng)的參數(shù)可以把普通方程化為參數(shù)方程.利用關(guān)系式x=cos,y=sin,x2+y2=2,yx=tan等可以將極坐標(biāo)方程與直角坐標(biāo)方程互化.【自我檢測】在平面直角坐標(biāo)系xOy中,直線l的方程為3x-y-23=0,以坐標(biāo)原點O為極點,以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為2cos =(1-cos2).(1)寫出直線l的一個參數(shù)方程與曲線C的直角坐標(biāo)方程;(2)已知直線l與曲線C交于A,B兩點,試求AB的中點N的坐標(biāo).模塊七選考模塊第21講坐標(biāo)系與參數(shù)方程典型真題研析1.解:(1)由x=cos ,y=sin 得C2的直角坐標(biāo)方程為(x+1)2+y2=4.(2)由(1)知C2是圓心為A(-1,0),半徑為2的圓.由題設(shè)知,C1是過點B(0,2)且關(guān)于y軸對稱的兩條射線.記y軸右邊的射線為l1,y軸左邊的射線為l2.由于B在圓C2的外面,故C1與C2有且僅有三個公共點等價于l1與C2只有一個公共點且l2與C2有兩個公共點,或l2與C2只有一個公共點且l1與C2有兩個公共點.當(dāng)l1與C2只有一個公共點時,A到l1所在直線的距離為2,所以|-k+2|k2+1=2,故k=-43或k=0.經(jīng)檢驗,當(dāng)k=0時,l1與C2沒有公共點;當(dāng)k=-43時,l1與C2只有一個公共點,l2與C2有兩個公共點.當(dāng)l2與C2只有一個公共點時,A到l2所在直線的距離為2,所以|k+2|k2+1=2,故k=0或k=43.經(jīng)檢驗,當(dāng)k=0時,l1與C2沒有公共點;當(dāng)k=43時,l2與C2沒有公共點.綜上,所求C1的方程為y=-43|x|+2.2.解:(1)曲線C的普通方程為x29+y2=1.當(dāng)a=-1時,直線l的普通方程為x+4y-3=0.由x+4y-3=0,x29+y2=1,解得x=3,y=0或x=-2125,y=2425.從而C與l的交點坐標(biāo)為(3,0),-2125,2425.(2)直線l的普通方程為x+4y-a-4=0,故C上的點(3cos ,sin )到l的距離d=|3cos+4sin-a-4|17.當(dāng)a-4時,d的最大值為a+917,由題設(shè)得a+917=17,所以a=8;當(dāng)a<-4時,d的最大值為-a+117,由題設(shè)得-a+117=17,所以a=-16.綜上,a=8或a=-16.考點考法探究解答1例1解:(1)將x=cos ,y=sin 代入x+3y=53中,得cos +3sin =53,整理得2sin+6=53,即直線l的極坐標(biāo)方程為2sin+6=53.由=4sin 得2=4sin ,將2=x2+y2,sin =y代入上式,得x2+y2=4y,可得x2+(y-2)2=4,即圓C的直角坐標(biāo)方程為x2+(y-2)2=4.(2)將=6分別代入=4sin ,2sin+6=53,得|OA|=4sin6=2,|OB|=532sin6+6=5,所以|AB|=|OB|-|OA|=3.【自我檢測】解:(1)圓C1的直角坐標(biāo)方程為x2+y2-4x-8y=0,把x=cos ,y=sin 代入上式,得2-4cos -8sin =0,所以C1的極坐標(biāo)方程為=4cos +8sin .易得C2的直角坐標(biāo)方程為y=3x.(2)分別將=3,=6代入=4cos +8sin 中,得|OM|=2+43,|ON|=4+23,則OMN的面積為12(2+43)(4+23)sin3-6=8+53.解答2例2解:(1)由曲線C的參數(shù)方程為x=3cos,y=sin(為參數(shù)),得曲線C的普通方程為x23+y2=1.當(dāng)=4時,直線l的普通方程為y=x-1,代入x23+y2=1,可得2x2-3x=0,x1=0,x2=32,|AB|=1+132-0=322.(2)將直線l的參數(shù)方程代入x23+y2=1,得(cos2+3sin2)t2+2cos t-2=0.設(shè)A,B對應(yīng)的參數(shù)分別為t1,t2,則t1t2=-2cos2+3sin2,|PA|PB|=-t1t2=2cos2+3sin2=21+2sin223,2.【自我檢測】解:(1)曲線C的參數(shù)方程為x=32cos,y=4sin(為參數(shù)),直線l的普通方程為2x+y-11=0.(2)可設(shè)點P32cos,4sin,則點P到直線l的距離d=55|3cos +4sin -11|=55|5sin(+)-11|,其中為銳角,且tan =34.則當(dāng)sin(+)=-1時,d取得最大值,最大值為1655;當(dāng)sin(+)=1時,d取得最小值,最小值為655.解答3例3解:(1)將x=2+22t,y=-1+22t(t為參數(shù))消去參數(shù)t,可得x-y-3=0,直線l的普通方程為y=x-3.由=22acos+4,得2=2a(cos -sin ).將2=x2+y2,cos =x,sin =y代入上式,得x2+y2-2ax+2ay=0,即(x-a)2+(y+a)2=2a2,曲線C的直角坐標(biāo)方程為(x-a)2+(y+a)2=2a2.(2)將x=2+22t,y=-1+22t代入x2+y2-2ax+2ay=0中,整理得t2+2t+5-6a=0.設(shè)M,N兩點對應(yīng)的參數(shù)分別為t1,t2,則t1+t2=-2,t1t2=5-6a.|MN|2=6|PM|PN|,(t1-t2)2=6|t1t2|,又a>56,t1t2<0,(t1-t2)2=-6t1t2,(t1+t2)2+2t1t2=0,即(-2)2+2(5-6a)=0,解得a=1,符合題意,a=1.【自我檢測】解:(1)直線l的方程為3x-y-23=0,即3(x-2)=y.令x=t+2,y=3t,則直線l的一個參數(shù)方程為x=t+2,y=3t(t為參數(shù)).由曲線C的極坐標(biāo)方程可得2(1-cos2)=2cos ,即2sin2=2cos ,可得曲線C的直角坐標(biāo)方程為y2=2x.(2)將x=t+2,y=3t代入y2=2x,得3t2-2t-4=0.設(shè)A,B對應(yīng)的參數(shù)分別為t1,t2,則t1+t2=23.設(shè)點A(x1,y1),B(x2,y2),N(x0,y0),則x0=x1+x22=2+t1+t22=73,y0=y1+y22=3(t1+t2)2=33,故AB的中點N的坐標(biāo)為73,33.備選理由 例1第(2)問考查兩弦長之和,其實質(zhì)是極徑之和,可以寫成極角的表達式,利用三角函數(shù)求解最值,有利于強化學(xué)生的綜合分析能力與化歸轉(zhuǎn)化思想;例2考查參數(shù)方程與極坐標(biāo)方程的綜合應(yīng)用.例1配例1使用在直角坐標(biāo)系xOy中,圓C的圓心為0,12,半徑為12,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.(1)求圓C的極坐標(biāo)方程;(2)設(shè)M,N是圓C上兩個動點,且滿足MON=23,求|OM|+|ON|的最大值.解:(1)圓C的直角坐標(biāo)方程為x2+y-122=14,即x2+y2-y=0,化成極坐標(biāo)方程為2-sin =0,整理得=sin .(2)設(shè)M(1,),N2,+23,則|OM|+|ON|=1+2=sin +sin+23=12sin +32cos =sin+3.由0<<,0<+23<,得0<<3,所以3<+3<23,故32<sin+31,即|OM|+|ON|的最大值為1.例2配例3使用在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為x=1+cos,y=sin(其中為參數(shù)),曲線C2:x28+y24=1.以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.(1)求曲線C1,C2的極坐標(biāo)方程;(2)射線l:=(0)與曲線C1,C2分別交于點A,B(A,B均異于原點O),當(dāng)0<<2時,求|OB|2-|OA|2的最小值.解:(1)由題意得,曲線C1的普通方程為(x-1)2+y2=1,則C1的極坐標(biāo)方程為=2cos .曲線C2的極坐標(biāo)方程為2=81+sin2.(2)聯(lián)立=(0)與C1的極坐標(biāo)方程,得|OA|2=4cos2,聯(lián)立=(0)與C2的極坐標(biāo)方程,得|OB|2=81+sin2,則|OB|2-|OA|2=81+sin2-4cos2=81+sin2-4(1-sin2)=81+sin2+4(1+sin2)-8281+sin24(1+sin2)-8=82-8(當(dāng)且僅當(dāng)sin =2-1時取等號),所以|OB|2-|OA|2的最小值為82-8.

注意事項

本文(2019屆高考數(shù)學(xué)總復(fù)習(xí) 模塊七 選考模塊 第21講 坐標(biāo)系與參數(shù)方程學(xué)案 理.docx)為本站會員(xt****7)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!