高考數(shù)學(xué)一輪復(fù)習(xí) 課時(shí)跟蹤檢測14 文 新人教A版
課時(shí)跟蹤檢測(十四) 高考基礎(chǔ)題型得分練1函數(shù)f(x)(x3)ex的單調(diào)遞增區(qū)間是()A(,2) B(0,3)C(1,4) D(2,)答案:D解析:函數(shù)f(x)(x3)ex的導(dǎo)數(shù)為f(x)(x3)exex(x3)ex(x2)ex.由函數(shù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,得當(dāng)f(x)>0時(shí),函數(shù)f(x)單調(diào)遞增,此時(shí)由不等式f(x)(x2)ex>0,解得x>2.2若函數(shù)f(x)2x33mx26x在區(qū)間(2,)上為增函數(shù),則實(shí)數(shù)m的取值范圍為()A(,2) B(,2C. D.答案:D解析:f(x)6x26mx6,當(dāng)x(2,)時(shí),f(x)0恒成立,即x2mx10恒成立,mx恒成立令g(x)x,g(x)1,當(dāng)x>2時(shí),g(x)>0,即g(x)在(2,)上單調(diào)遞增,m2,故選D.32017甘肅蘭州高三診斷定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)f(x),若f(x)f(2x),且當(dāng)x(,1)時(shí),(x1)f(x)<0,設(shè)af(e為自然對(duì)數(shù)的底數(shù)),bf(),cf(log28),則()Ac<a<b Bc<b<aCa<b<c Da<c<b答案:A解析:當(dāng)x(,1)時(shí),(x1)f(x)<0,解得f(x)>0,所以函數(shù)f(x)在(,1)上單調(diào)遞增,因?yàn)閒(x)f(2x),所以函數(shù)f(x)的圖象關(guān)于直線x1對(duì)稱,所以函數(shù)f(x)的圖象上的點(diǎn)距離直線x1越近,函數(shù)值越大,又log283,所以log28>2>>1,得f()>f>f(log28),故c<a<b.4定義在R上的函數(shù)f(x)滿足:f(x)>f(x)恒成立,若x1<x2,則e x1f(x2)與e x2f(x1)的大小關(guān)系為()Ae x1f(x2) >e x2f(x1)Be x1f(x2) <e x2f(x1)Ce x1f(x2)e x2f(x1)De x1f(x2)與e x2f(x1)的大小關(guān)系不確定答案:A解析:設(shè)g(x),則g(x),由題意g(x)>0,所以g(x)單調(diào)遞增,當(dāng)x1<x2時(shí),g(x1)<g(x2),即<,所以e x1f(x2)>e x2f(x1)5函數(shù)yx2ln x的單調(diào)遞減區(qū)間為()A(0,1) B(0,)C(1,) D(0,2)答案:A解析:對(duì)于函數(shù)yx2ln x,易得其定義域?yàn)閤|x>0,yx,令<0,又x>0,所以x21<0,解得0<x<1,即函數(shù)yx2ln x的單調(diào)遞減區(qū)間為(0,1)6已知函數(shù)f(x)x在(,1)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是()A1,) B(,0)(0,1C(0,1 D(,0)1,)答案:D解析:函數(shù)f(x)x的導(dǎo)數(shù)為f(x)1,由于f(x)在(,1)上單調(diào)遞增,則f(x)0在(,1)上恒成立,即x2在(,1)上恒成立由于當(dāng)x<1時(shí),x2>1,則有1,解得a1或a<0.7若函數(shù)f(x)x312x在區(qū)間(k1,k1)上不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是_答案:(3,1)(1,3)解析:因?yàn)閥3x212,由y>0,得函數(shù)的增區(qū)間是(,2)及(2,);由y<0,得函數(shù)的減區(qū)間是(2,2)由于函數(shù)在(k1,k1)上不是單調(diào)函數(shù),所以k1<2<k1或k1<2<k1,解得3<k<1或1<k<3.8函數(shù)f(x)xln x的單調(diào)遞減區(qū)間為_答案:(0,1)解析:函數(shù)的定義域是(0,),且f(x)1,令f(x)<0,解得0<x<1,所以單調(diào)遞減區(qū)間是(0,1)9已知a0,函數(shù)f(x)(x22ax)ex,若f(x)在1,1上是單調(diào)減函數(shù),則a的取值范圍是_答案:解析:f(x)(2x2a)ex(x22ax)exx2(22a)x2aex,由題意,當(dāng)x1,1時(shí),f(x)0恒成立,即x2(22a)x2a0在x1,1時(shí)恒成立令g(x)x2(22a)x2a,則有即解得a.沖刺名校能力提升練1設(shè)函數(shù)f(x)x29ln x在區(qū)間a1,a1上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是()A(1,2 B4,)C(,2 D(0,3答案:A解析:f(x)x29ln x,f(x)x(x>0),當(dāng)x0時(shí),有0<x3,即在(0,3上函數(shù)f(x)是減函數(shù),a1>0且a13,解得1<a2.2. f(x),g(x)(g(x)0)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f(x)g(x)<f(x)g(x),且f(3)0,則<0的解集為()A(,3)(3,)B(3,0)(0,3)C(3,0)(3,)D(,3)(0,3)答案:C解析:是奇函數(shù),當(dāng)x<0時(shí),f(x)g(x)<f(x)g(x),<0,則在(,0)上為減函數(shù),在(0,)上也為減函數(shù)又f(3)0,則有0,可知<0的解集為(3,0)(3,)故選C.32017河北衡水中學(xué)月考已知f(x)是可導(dǎo)的函數(shù),且f(x)<f(x)對(duì)于xR恒成立,則()Af(1)<ef(0),f(2 016)>e2 016f(0)Bf(1)>ef(0),f(2 016)>e2 016f(0)Cf(1)>ef(0),f(2 016)<e2 016f(0)Df(1)<ef(0),f(2 016)<e2 016f(0)答案:D解析:令g(x),則g(x)<0,所以函數(shù)g(x)在R上是單調(diào)減函數(shù),所以g(1)<g(0),g(2 016)<g(0),即<,<,故f(1)<ef(0),f(2 016)<e2 016f(0)42017河北“五個(gè)一”名校聯(lián)盟一模已知函數(shù)f(x)的定義域?yàn)?,),且f(4)f(2)1,f(x)為f(x)的導(dǎo)函數(shù),函數(shù)yf(x)的圖象如圖所示則平面區(qū)域的面積是()A2 B4 C5 D8答案:B解析:由導(dǎo)函數(shù)的圖象可知,函數(shù)f(x)在2,0)上單調(diào)遞減,在0,)上單調(diào)遞增,a0,b0,2ab0.又f(4)1,f(2ab)1,f(2ab)f(4),02ab4.由畫出圖象如圖所示,圖中陰影部分的面積為S244,故選B.5若函數(shù)f(x)x3x22ax在上存在單調(diào)遞增區(qū)間,則a的取值范圍是_答案:解析:對(duì)f(x)求導(dǎo),得f(x)x2x2a22a.當(dāng)x時(shí),f(x)的最大值為f2a.令2a>0,解得a>.所以a的取值范圍是.6函數(shù)f(x)ax33x23x(a0)(1)討論函數(shù)f(x)的單調(diào)性;(2)若函數(shù)f(x)在區(qū)間(1,2)上是增函數(shù),求a的取值范圍解:(1)f(x)3ax26x3,f(x)3ax26x30的判別式36(1a)若a1,則f(x)0,且f(x)0,當(dāng)且僅當(dāng)a1,x1,故此時(shí)f(x)在R上是增函數(shù)由于a0,故當(dāng)a<1時(shí),f(x)0有兩個(gè)根,x1,x2.若0<a<1,則當(dāng)x(,x2)或x(x1,)時(shí),f(x)>0,故f(x)分別在(,x2),(x1,)上是增函數(shù);當(dāng)x(x2,x1)時(shí),f(x)<0,故f(x)在(x2,x1)上是減函數(shù)若a<0,則當(dāng)x(,x1)或(x2,)時(shí),f(x)<0,故f(x)分別在(,x1),(x2,)上是減函數(shù);當(dāng)x(x1,x2)時(shí),f(x)>0,故f(x)在(x1,x2)上是增函數(shù)(2)當(dāng)a>0,x>0時(shí),f(x)>0,所以當(dāng)a>0時(shí),f(x)在區(qū)間(1,2)上是增函數(shù)當(dāng)a<0時(shí),f(x)在區(qū)間(1,2)上是增函數(shù),當(dāng)且僅當(dāng)f(1)0且f(2)0,解得a<0.綜上,a的取值范圍是(0,)6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375