(浙江專用)2020版高考數(shù)學(xué)新增分大一輪復(fù)習(xí) 第九章 平面解析幾何 9.5 橢圓(第1課時(shí))課件.ppt
9.5橢圓,第九章平面解析幾何,NEIRONGSUOYIN,內(nèi)容索引,基礎(chǔ)知識(shí)自主學(xué)習(xí),題型分類(lèi)深度剖析,課時(shí)作業(yè),1,基礎(chǔ)知識(shí)自主學(xué)習(xí),PARTONE,知識(shí)梳理,1.橢圓的概念平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離的和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫做.這兩個(gè)定點(diǎn)叫做橢圓的,兩焦點(diǎn)間的距離叫做橢圓的.集合PM|MF1|MF2|2a,|F1F2|2c,其中a>0,c>0,且a,c為常數(shù):(1)若,則集合P為橢圓;(2)若,則集合P為線段;(3)若,則集合P為空集.,ZHISHISHULI,橢圓,焦點(diǎn),焦距,a>c,ac,a<c,2.橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì),2a,2b,2c,a2b2c2,【概念方法微思考】,1.在橢圓的定義中,若2a|F1F2|或2a<|F1F2|,動(dòng)點(diǎn)P的軌跡如何?,提示當(dāng)2a|F1F2|時(shí)動(dòng)點(diǎn)P的軌跡是線段F1F2;當(dāng)2a0,n>0,mn)表示的曲線是橢圓.(),1,2,3,4,5,6,7,1,2,3,4,5,6,題組二教材改編,解析當(dāng)焦點(diǎn)在x軸上時(shí),10m>m2>0,10m(m2)4,m4.當(dāng)焦點(diǎn)在y軸上時(shí),m2>10m>0,m2(10m)4,m8.m4或8.,7,A.4B.8C.4或8D.12,1,2,3,4,5,6,7,解得10或2(舍去),,1,2,3,4,5,6,7,解析設(shè)P(x,y),由題意知c2a2b2541,所以c1,則F1(1,0),F(xiàn)2(1,0).由題意可得點(diǎn)P到x軸的距離為1,,A.m>2或m2C.12或2<m2m>0,解得m>2或2<m|OF|.P點(diǎn)的軌跡是以O(shè),F(xiàn)為焦點(diǎn)的橢圓.,設(shè)橢圓的另一個(gè)焦點(diǎn)為F,則由橢圓的定義得|BA|BF|CA|CF|2a,所以ABC的周長(zhǎng)為|BA|BC|CA|BA|BF|CF|CA|(|BA|BF|)(|CF|CA|)2a2a4a,4.設(shè)F1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),P為橢圓上任意一點(diǎn),點(diǎn)M的坐標(biāo)為(6,4),則|PM|PF1|的最小值為_(kāi).,解析由橢圓的方程可知F2(3,0),由橢圓的定義可得|PF1|2a|PF2|.|PM|PF1|PM|(2a|PF2|)|PM|PF2|2a|MF2|2a,當(dāng)且僅當(dāng)M,P,F(xiàn)2三點(diǎn)共線時(shí)取得等號(hào),,5,|PM|PF1|5105,即|PM|PF1|的最小值為5.,橢圓定義的應(yīng)用技巧(1)橢圓定義的應(yīng)用主要有:求橢圓的標(biāo)準(zhǔn)方程,求焦點(diǎn)三角形的周長(zhǎng)、面積及弦長(zhǎng)、最值和離心率等.(2)通常定義和余弦定理結(jié)合使用,求解關(guān)于焦點(diǎn)三角形的周長(zhǎng)和面積問(wèn)題.,題型二橢圓的標(biāo)準(zhǔn)方程,多維探究,命題點(diǎn)1定義法例1(1)(2019麗水調(diào)研)已知兩圓C1:(x4)2y2169,C2:(x4)2y29,動(dòng)圓M在圓C1內(nèi)部且和圓C1內(nèi)切,和圓C2外切,則動(dòng)圓圓心M的軌跡方程為,解析設(shè)圓M的半徑為r,則|MC1|MC2|(13r)(3r)16>8|C1C2|,所以M的軌跡是以C1,C2為焦點(diǎn)的橢圓,且2a16,2c8,,(2)在ABC中,A(4,0),B(4,0),ABC的周長(zhǎng)是18,則頂點(diǎn)C的軌跡方程是,解析由|AC|BC|18810>8知,頂點(diǎn)C的軌跡是以A,B為焦點(diǎn)的橢圓(A,B,C不共線).,命題點(diǎn)2待定系數(shù)法,解析設(shè)橢圓的方程為mx2ny21(m,n>0,mn).,(2)一個(gè)橢圓的中心在原點(diǎn),坐標(biāo)軸為對(duì)稱軸,焦點(diǎn)F1,F(xiàn)2在x軸上,P(2,)是橢圓上一點(diǎn),且|PF1|,|F1F2|,|PF2|成等差數(shù)列,則橢圓的標(biāo)準(zhǔn)方程為_(kāi).,解析橢圓的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,,(1)求橢圓的標(biāo)準(zhǔn)方程多采用定義法和待定系數(shù)法.(2)利用定義法求橢圓方程,要注意條件2a>|F1F2|;利用待定系數(shù)法要先定形(焦點(diǎn)位置),再定量,也可把橢圓方程設(shè)為mx2ny21(m>0,n>0,mn)的形式.,橢圓上一點(diǎn)到兩焦點(diǎn)的距離之和為12,2a12,a6,,其焦點(diǎn)在y軸上,且c225916.,c216,且c2a2b2,故a2b216.,由得b24,a220,,題型三橢圓的幾何性質(zhì),命題點(diǎn)1求離心率的值(或范圍),多維探究,解析方法一如圖,在RtPF2F1中,PF1F230,|F1F2|2c,,|PF1|PF2|2a,,方法二(特殊值法):在RtPF2F1中,令|PF2|1,,由橢圓定義得|PF1|PF2|2a,|PF1|22|PF1|PF2|PF2|24a2,又|PF1|,|F1F2|,|PF2|成等比數(shù)列,|PF1|PF2|F1F2|24c2,則|PF1|2|PF2|28c24a2,(xc)2y2(xc)2y28c24a2,整理得x2y25c22a2,,而|PF2|的最小值為ac,,所以(ac)24(bc)2,所以ac2(bc),所以ac2b,所以(ac)24(a2c2),所以5c22ac3a20,所以5e22e30.又b>c,所以b2>c2,所以a2c2>c2,所以2e2<1.,命題點(diǎn)2求參數(shù)的值(或范圍),解析方法一設(shè)橢圓焦點(diǎn)在x軸上,則0<m<3,點(diǎn)M(x,y).過(guò)點(diǎn)M作x軸的垂線,交x軸于點(diǎn)N,則N(x,0).,結(jié)合0<m<3解得0<m1.對(duì)于焦點(diǎn)在y軸上的情況,同理亦可得m9.則m的取值范圍是(0,19,).故選A.,方法二當(dāng)0<m3時(shí),焦點(diǎn)在y軸上,要使C上存在點(diǎn)M滿足AMB120,,故m的取值范圍為(0,19,).故選A.,(1)求橢圓離心率或其范圍的方法解題的關(guān)鍵是借助圖形建立關(guān)于a,b,c的關(guān)系式(等式或不等式),轉(zhuǎn)化為e的關(guān)系式,常用方法如下:,構(gòu)造a,c的齊次式.離心率e的求解中可以不求出a,c的具體值,而是得出a與c的關(guān)系,從而求得e,一般步驟如下:()建立方程:根據(jù)已知條件得到齊次方程Aa2BacCc20;()化簡(jiǎn):兩邊同時(shí)除以a2,化簡(jiǎn)齊次方程,得到關(guān)于e的一元二次方程ABeCe20;()求解:解一元二次方程,得e的值;()驗(yàn)算取舍:根據(jù)橢圓離心率的取值范圍e(0,1)確定離心率e的值.若得到齊次不等式,可以類(lèi)似求出離心率e的取值范圍.,(2)橢圓幾何性質(zhì)的應(yīng)用技巧與橢圓的幾何性質(zhì)有關(guān)的問(wèn)題要結(jié)合圖形進(jìn)行分析,即使不畫(huà)出圖形,思考時(shí)也要聯(lián)想到圖形.橢圓相關(guān)量的范圍或最值問(wèn)題常常涉及一些不等式.例如,axa,byb,0<e<1,三角形兩邊之和大于第三邊,在求橢圓相關(guān)量的范圍或最值時(shí),要注意應(yīng)用這些不等關(guān)系.,跟蹤訓(xùn)練2(1)已知橢圓1(0<b0,所以e43e21>0,又0<e3B.a3或a3或6<aa6>0,解得a>3或6<aa2c2,即式不正確;a1c1a2c2|PF|,即式正確;由a1c1a2c2>0,c1>c2>0知,,即式正確,式不正確.故選D.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析由橢圓的定義可知|PF1|PF2|2a,,2b2a23b2,即2a22c2a23a23c2,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,10,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析設(shè)F1是橢圓的左焦點(diǎn).如圖,連接AF1.由橢圓的對(duì)稱性,結(jié)合橢圓的定義知|AF2|BF2|2a6,所以要使ABF2的周長(zhǎng)最小,必有|AB|2b4,所以ABF2的周長(zhǎng)的最小值為10.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,ABx軸,A,B兩點(diǎn)的橫坐標(biāo)為c,代入橢圓方程,,a2b2c2,由解得a29,b26,c23,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,又由題意知a2b22,將其代入(*)式整理得3b42b280,所以b22,則a24,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,10.已知A,B,F(xiàn)分別是橢圓x21(00,則橢圓的離心率的取值范圍為_(kāi).,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,11.已知點(diǎn)P是圓F1:(x1)2y216上任意一點(diǎn)(F1是圓心),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對(duì)稱.線段PF2的垂直平分線m分別與PF1,PF2交于M,N兩點(diǎn).求點(diǎn)M的軌跡C的方程.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解由題意得F1(1,0),F(xiàn)2(1,0),圓F1的半徑為4,且|MF2|MP|,從而|MF1|MF2|MF1|MP|PF1|4>|F1F2|,所以點(diǎn)M的軌跡是以F1,F(xiàn)2為焦點(diǎn)的橢圓,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,技能提升練,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,13.(2018浙江省臺(tái)州適應(yīng)性考試)已知橢圓C的中心為原點(diǎn)O,F(xiàn)(5,0)為橢圓C的左焦點(diǎn),P為橢圓C上一點(diǎn),且滿足|OP|OF|,|PF|6,則橢圓C的標(biāo)準(zhǔn)方程為,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,連接PM,則|FM|2|OF|10,由|OP|OF|OM|知,F(xiàn)PPM,又|PF|6,,所以a7,又c5,所以b2a2c2492524,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析如圖,作出橢圓的左焦點(diǎn)F,分別連接AB,AF,BF,由橢圓的對(duì)稱性可知,四邊形AFBF為平行四邊形.,所以四邊形AFBF為矩形,所以|AB|FF|2c.設(shè)|AF|m,|AF|n,則由橢圓的定義知mn2a,在RtAFF中,m2n24c2.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,拓展沖刺練,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,又由橢圓定義得|PF1|PF2|2a,,因?yàn)镻F2是PF1F2的一邊,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,即c22aca2>0,所以e22e1>0(0<e<1),,