2019-2020年高考數(shù)學(xué)專(zhuān)題復(fù)習(xí)導(dǎo)練測(cè) 第二章 第5講 對(duì)數(shù)與對(duì)數(shù)函數(shù) 理 新人教A版.doc
2019-2020年高考數(shù)學(xué)專(zhuān)題復(fù)習(xí)導(dǎo)練測(cè) 第二章 第5講 對(duì)數(shù)與對(duì)數(shù)函數(shù) 理 新人教A版一、選擇題1已知實(shí)數(shù)alog45,b0,clog30.4,則a,b,c的大小關(guān)系為()Ab<c<a Bb<a<cCc<a<b Dc<b<a解析 由題知,alog45>1,b01,clog30.4<0,故c<b<a.答案 D2設(shè)f(x)lg(a)是奇函數(shù),則使f(x)0的x的取值范圍是()A(1,0) B(0,1)C(,0) D(,0)(1,)解析f(x)為奇函數(shù),f(0)0,a1.f(x)lg,由f(x)0得,01,1x0.答案A3若函數(shù)yloga(x2ax1)有最小值,則a的取值范圍是()A0<a<1 B0<a<2,a1C1<a<2 Da2解析因?yàn)閥x2ax1是開(kāi)口向上的二次函數(shù),從而有最小值,故要使函數(shù)yloga(x2ax1)有最小值,則a>1,且>0,得1<a<2,故選C.答案C4若函數(shù)f(x)loga(xb)的大致圖象如圖所示,其中a,b為常數(shù),則函數(shù)g(x)axb的大致圖象是 ()解析由已知函數(shù)f(x)loga(xb)的圖象可得0<a<1,0<b<1.則g(x)axb的圖象由yax的圖象沿y軸向上平移b個(gè)單位而得到,故選B.答案B5若函數(shù)f(x)loga(x2ax3)(a>0且a1)滿(mǎn)足對(duì)任意的x1,x2,當(dāng)x1<x2時(shí),f(x1)f(x2)>0,則實(shí)數(shù)a的取值范圍為 ()A(0,1)(1,3) B(1,3)C(0,1)(1,2) D(1,2)解析“對(duì)任意的x1,x2,當(dāng)x1<x2時(shí),f(x1)f(x2)>0”實(shí)質(zhì)上就是“函數(shù)單調(diào)遞減”的“偽裝”,同時(shí)還隱含了“f(x)有意義”事實(shí)上由于g(x)x2ax3在x時(shí)遞減,從而由此得a的取值范圍為(1,2)故選D.答案D6已知函數(shù)f(x)|lg x|,若0<a<b,且f(a)f(b),則a2b的取值范圍是 ()A(2,) B2,)C(3,) D3,)解析作出函數(shù)f(x)|lg x|的圖象,由f(a)f(b),0<a<b知0<a<1<b,lg alg b,ab1,a2ba,由函數(shù)yx的單調(diào)性可知,當(dāng)0<x<1時(shí),函數(shù)單調(diào)遞減,a2ba>3.故選C.答案C二、填空題7對(duì)任意非零實(shí)數(shù)a,b,若ab的運(yùn)算原理如圖所示,則(log8)2_.解析框圖的實(shí)質(zhì)是分段函數(shù),log83,29,由框圖可以看出輸出3.答案3.8設(shè)g(x)則g_.解析gln 0,ggeln.答案9已知集合Ax|log2x2,B(,a),若AB,則實(shí)數(shù)a的取值范圍是(c,),其中c_.解析log2x2,0x4.又AB,a4,c4.答案410對(duì)于任意實(shí)數(shù)x,符號(hào)x表示x的整數(shù)部分,即x是不超過(guò)x的最大整數(shù)在實(shí)數(shù)軸R(箭頭向右)上x(chóng)是在點(diǎn)x左側(cè)的第一個(gè)整數(shù)點(diǎn),當(dāng)x是整數(shù)時(shí)x就是x.這個(gè)函數(shù)x叫做“取整函數(shù)”,它在數(shù)學(xué)本身和生產(chǎn)實(shí)踐中有廣泛的應(yīng)用那么log31log32log33log34log3243_.解析當(dāng)1n2時(shí),log3n0,當(dāng)3n<32時(shí),log3n1,當(dāng)3kn<3k1時(shí),log3nk.故log31log32log33log34log3243021(323)2(3332)3(3433)4(3534)5857.答案857三、解答題11已知函數(shù)f(x)log(a23a3)x.(1)判斷函數(shù)的奇偶性;(2)若yf(x)在(,)上為減函數(shù),求a的取值范圍解(1)函數(shù)f(x)log(a23a3)x的定義域?yàn)镽.又f(x)log(a23a3)xlog(a23a3)xf(x),所以函數(shù)f(x)是奇函數(shù)(2)函數(shù)f(x)log(a23a3)x在(,)上為減函數(shù),則y(a23a3)x在(,)上為增函數(shù),由指數(shù)函數(shù)的單調(diào)性,知a23a3>1,解得a<1或a>2.所以a的取值范圍是(,1)(2,)12若函數(shù)ylg(34xx2)的定義域?yàn)镸.當(dāng)xM時(shí),求f(x)2x234x的最值及相應(yīng)的x的值解ylg(34xx2),34xx20,解得x1或x3,Mx|x1,或x3,f(x)2x234x42x3(2x)2.令2xt,x1或x3,t8或0t2.f(t)4t3t232(t8或0t2)由二次函數(shù)性質(zhì)可知:當(dāng)0t2時(shí),f(t),當(dāng)t8時(shí),f(t)(,160),當(dāng)2xt,即xlog2 時(shí),f(x)max.綜上可知:當(dāng)xlog2 時(shí),f(x)取到最大值為,無(wú)最小值13已知函數(shù)f(x)loga(a0,b0,a1)(1)求f(x)的定義域;(2)討論f(x)的奇偶性;(3)討論f(x)的單調(diào)性;解(1)令0,解得f(x)的定義域?yàn)?,b)(b,)(2)因f(x)logaloga1logaf(x),故f(x)是奇函數(shù)(3)令u(x),則函數(shù)u(x)1在(,b)和(b,)上是減函數(shù),所以當(dāng)0a1時(shí),f(x)在(,b)和(b,)上是增函數(shù);當(dāng)a1時(shí),f(x)在(,b)和(b,)上是減函數(shù)14已知函數(shù)f(x)loga,(a>0,且a1)(1)求函數(shù)的定義域,并證明:f(x)loga在定義域上是奇函數(shù);(2)對(duì)于x2,4,f(x)loga>loga恒成立,求m的取值范圍解(1)由>0,解得x<1或x>1,函數(shù)的定義域?yàn)?,1)(1,)當(dāng)x(,1)(1,)時(shí),f(x)logalogaloga1logaf(x),f(x)loga在定義域上是奇函數(shù)(2)由x2,4時(shí),f(x)loga>loga恒成立,當(dāng)a>1時(shí),>>0對(duì)x2,4恒成立0<m<(x1)(x1)(7x)在x2,4恒成立設(shè)g(x)(x1)(x1)(7x),x2,4則g(x)x37x2x7,g(x)3x214x132,當(dāng)x2,4時(shí),g(x)>0.yg(x)在區(qū)間2,4上是增函數(shù),g(x)ming(2)15.0<m<15.當(dāng)0<a<1時(shí), 由x2,4時(shí),f(x)loga>loga恒成立,<對(duì)x2,4恒成立m>(x1)(x1)(7x)在x2,4恒成立設(shè)g(x)(x1)(x1)(7x),x2,4,由可知yg(x)在區(qū)間2,4上是增函數(shù),g(x)maxg(4)45,m>45.m的取值范圍是(0,15)(45,).