2019-2020年高中數(shù)學(xué) 4.2.1 實(shí)際問題中導(dǎo)數(shù)的意義教案 北師大選修1-1.doc
-
資源ID:2719653
資源大?。?span id="db2hnsg" class="font-tahoma">88.50KB
全文頁數(shù):3頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。
|
2019-2020年高中數(shù)學(xué) 4.2.1 實(shí)際問題中導(dǎo)數(shù)的意義教案 北師大選修1-1.doc
2019-2020年高中數(shù)學(xué) 4.2.1 實(shí)際問題中導(dǎo)數(shù)的意義教案 北師大選修1-1教學(xué)過程:一、復(fù)習(xí)引入: 1.極大值: 一般地,設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,如果對x0附近的所有的點(diǎn),都有f(x)f(x0),就說f(x0)是函數(shù)f(x)的一個極大值,記作y極大值=f(x0),x0是極大值點(diǎn)2.極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對x0附近的所有的點(diǎn),都有f(x)f(x0).就說f(x0)是函數(shù)f(x)的一個極小值,記作y極小值=f(x0),x0是極小值點(diǎn)3.極大值與極小值統(tǒng)稱為極值 4. 判別f(x0)是極大、極小值的方法:若滿足,且在的兩側(cè)的導(dǎo)數(shù)異號,則是的極值點(diǎn),是極值,并且如果在兩側(cè)滿足“左正右負(fù)”,則是的極大值點(diǎn),是極大值;如果在兩側(cè)滿足“左負(fù)右正”,則是的極小值點(diǎn),是極小值5. 求可導(dǎo)函數(shù)f(x)的極值的步驟: (1)確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù)f(x) (2)求方程f(x)=0的根(3)用函數(shù)的導(dǎo)數(shù)為0的點(diǎn),順次將函數(shù)的定義區(qū)間分成若干小開區(qū)間,并列成表格.檢查f(x)在方程根左右的值的符號,如果左正右負(fù),那么f(x)在這個根處取得極大值;如果左負(fù)右正,那么f(x)在這個根處取得極小值;如果左右不改變符號即都為正或都為負(fù),那么f(x)在這個根處無極值6.函數(shù)的最大值和最小值:在閉區(qū)間上連續(xù)的函數(shù)在上必有最大值與最小值在開區(qū)間內(nèi)連續(xù)的函數(shù)不一定有最大值與最小值 函數(shù)的最值是比較整個定義域內(nèi)的函數(shù)值得出的;函數(shù)的極值是比較極值點(diǎn)附近函數(shù)值得出的函數(shù)在閉區(qū)間上連續(xù),是在閉區(qū)間上有最大值與最小值的充分條件而非必要條件(4)函數(shù)在其定義區(qū)間上的最大值、最小值最多各有一個,而函數(shù)的極值可能不止一個,也可能沒有一個7.利用導(dǎo)數(shù)求函數(shù)的最值步驟:求在內(nèi)的極值;將的各極值與、比較得出函數(shù)在上的最值二、講解范例:_x_x_60_60xx例1在邊長為60 cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底的邊長是多少時,箱底的容積最大?最大容積是多少?解法一:設(shè)箱底邊長為xcm,則箱高cm,得箱子容積 令 0,解得 x=0(舍去),x=40, 并求得V(40)=16 000由題意可知,當(dāng)x過?。ń咏?)或過大(接近60)時,箱子容積很小,因此,16 000是最大值答:當(dāng)x=40cm時,箱子容積最大,最大容積是16 000cm3解法二:設(shè)箱高為xcm,則箱底長為(60-2x)cm,則得箱子容積(后面同解法一,略)由題意可知,當(dāng)x過小或過大時箱子容積很小,所以最大值出現(xiàn)在極值點(diǎn)處事實(shí)上,可導(dǎo)函數(shù)、在各自的定義域中都只有一個極值點(diǎn),從圖象角度理解即只有一個波峰,是單峰的,因而這個極值點(diǎn)就是最值點(diǎn),不必考慮端點(diǎn)的函數(shù)值例2圓柱形金屬飲料罐的容積一定時,它的高與底與半徑應(yīng)怎樣選取,才能使所用的材料最?。拷猓涸O(shè)圓柱的高為h,底半徑為R,則表面積S=2Rh+2R2由V=R2h,得,則S(R)= 2R+ 2R2=+2R2令+4R=0解得,R=,從而h=2即h=2R因?yàn)镾(R)只有一個極值,所以它是最小值 答:當(dāng)罐的高與底直徑相等時,所用材料最省變式:當(dāng)圓柱形金屬飲料罐的表面積為定值S時,它的高與底面半徑應(yīng)怎樣選取,才能使所用材料最?。?提示:S=2+h=V(R)=R= )=0 例3在經(jīng)濟(jì)學(xué)中,生產(chǎn)x單位產(chǎn)品的成本稱為成本函數(shù)同,記為C(x),出售x單位產(chǎn)品的收益稱為收益函數(shù),記為R(x),R(x)C(x)稱為利潤函數(shù),記為P(x)。(1)、如果C(x),那么生產(chǎn)多少單位產(chǎn)品時,邊際最低?(邊際成本:生產(chǎn)規(guī)模增加一個單位時成本的增加量)(2)、如果C(x)=50x10000,產(chǎn)品的單價P1000.01x,那么怎樣定價,可使利潤最大?變式:已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價格p與產(chǎn)量q的函數(shù)關(guān)系式為求產(chǎn)量q為何值時,利潤L最大?分析:利潤L等于收入R減去成本C,而收入R等于產(chǎn)量乘價格由此可得出利潤L與產(chǎn)量q的函數(shù)關(guān)系式,再用導(dǎo)數(shù)求最大利潤解:收入,利潤令,即,求得唯一的極值點(diǎn) 答:產(chǎn)量為84時,利潤L最大三、課堂練習(xí):1.函數(shù)y=2x33x212x+5在0,3上的最小值是_.2.函數(shù)f(x)=sin2xx在,上的最大值為_;最小值為_.3.將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應(yīng)分成_和_.4.使內(nèi)接橢圓=1的矩形面積最大,矩形的長為_,寬為_.5.在半徑為R的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽開時,它的面積最大答案:1. 15 2. 3. 4.a b 5.R四、小結(jié) :解有關(guān)函數(shù)最大值、最小值的實(shí)際問題,需要分析問題中各個變量之間的關(guān)系,找出適當(dāng)?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問題的實(shí)際意義根據(jù)問題的實(shí)際意義來判斷函數(shù)最值時,如果函數(shù)在此區(qū)間上只有一個極值點(diǎn),那么這個極值就是所求最值,不必再與端點(diǎn)值比較相當(dāng)多有關(guān)最值的實(shí)際問題用導(dǎo)數(shù)方法解決較簡單 五、課后作業(yè):1.有一邊長分別為8與5的長方形,在各角剪去相同的小正方形,把四邊折起作成一個無蓋小盒,要使紙盒的容積最大,問剪去的小正方形的邊長應(yīng)為多少?解:(1)正方形邊長為x,則V=(82x)(52x)x=2(2x313x2+20x)(0<x<)V=4(3x213x+10)(0<x<),V=0得x=1 根據(jù)實(shí)際情況,小盒容積最大是存在的,當(dāng)x=1時,容積V取最大值為18.2.一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時,希望在斷面ABCD的面積為定值S時,使得濕周l=AB+BC+CD最小,這樣可使水流阻力小,滲透少,求此時的高h(yuǎn)和下底邊長b. 解:由梯形面積公式,得S= (AD+BC)h,其中AD=2DE+BC,DE=h,BC=bAD=h+b, S= CD=,AB=CD.l=2+b由得b=h,代入,l=l=0,h=, 當(dāng)h<時,l<0,h>時,l>0.h=時,l取最小值,此時b=