2019-2020年高中數(shù)學 4.1.2 函數(shù)的極值教案 北師大選修1-1.doc
-
資源ID:2633202
資源大小:82KB
全文頁數(shù):3頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
2019-2020年高中數(shù)學 4.1.2 函數(shù)的極值教案 北師大選修1-1.doc
2019-2020年高中數(shù)學 4.1.2 函數(shù)的極值教案 北師大選修1-1一、復習引入: 1. 常見函數(shù)的導數(shù)公式:; ; 2.法則1 法則2 , 法則3 3. 函數(shù)的導數(shù)與函數(shù)的單調(diào)性的關(guān)系:設(shè)函數(shù)y=f(x) 在某個區(qū)間內(nèi)有導數(shù),如果在這個區(qū)間內(nèi)>0,那么函數(shù)y=f(x) 在為這個區(qū)間內(nèi)的增函數(shù);如果在這個區(qū)間內(nèi)<0,那么函數(shù)y=f(x) 在為這個區(qū)間內(nèi)的減函數(shù)4.用導數(shù)求函數(shù)單調(diào)區(qū)間的步驟:求函數(shù)f(x)的導數(shù)f(x). 令f(x)0解不等式,得x的范圍就是遞增區(qū)間.令f(x)0解不等式,得x的范圍,就是遞減區(qū)間 二、講解新課:1.極大值: 一般地,設(shè)函數(shù)f(x)在點x0附近有定義,如果對x0附近的所有的點都有f(x)f(x0),就說f(x0)是函數(shù)f(x)的一個極大值,記作y極大值=f(x0),x0是極大值點2.極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對x0附近的所有的點,都有f(x)f(x0).就說f(x0)是函數(shù)f(x)的一個極小值,記作y極小值=f(x0),x0是極小值點3.極大值與極小值統(tǒng)稱為極值在定義中,取得極值的點稱為極值點,極值點是自變量的值,極值指的是函數(shù)值請注意以下幾點:()極值是一個局部概念由定義,極值只是某個點的函數(shù)值與它附近點的函數(shù)值比較是最大或最小并不意味著它在函數(shù)的整個的定義域內(nèi)最大或最小()函數(shù)的極值不是唯一的即一個函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個()極大值與極小值之間無確定的大小關(guān)系即一個函數(shù)的極大值未必大于極小值,如下圖所示,是極大值點,是極小值點,而>()函數(shù)的極值點一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點不能成為極值點而使函數(shù)取得最大值、最小值的點可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點4. 判別f(x0)是極大、極小值的方法:若滿足,且在的兩側(cè)的導數(shù)異號,則是的極值點,是極值,并且如果在兩側(cè)滿足“左正右負”,則是的極大值點,是極大值;如果在兩側(cè)滿足“左負右正”,則是的極小值點,是極小值5. 求可導函數(shù)f(x)的極值的步驟: (1)確定函數(shù)的定義區(qū)間,求導數(shù)(2)求方程=0的根(3)用函數(shù)的導數(shù)為0的點,順次將函數(shù)的定義區(qū)間分成若干小開區(qū)間,并列成表格.檢查在方程根左右的值的符號,如果左正右負,那么f(x)在這個根處取得極大值;如果左負右正,那么f(x)在這個根處取得極小值;如果左右不改變符號,那么f(x)在這個根處無極值三、講解范例:例1求y=x34x+的極值解:y=(x34x+)=x24=(x+2)(x2) 令y=0,解得x1=2,x2=2當x變化時,y,y的變化情況如下表-2(-2,2)2+00+極大值極小值當x=2時,y有極大值且y極大值=當x=2時,y有極小值且y極小值=5例2求y=(x21)3+1的極值解:y=6x(x21)2=6x(x+1)2(x1)2令y=0解得x1=1,x2=0,x3=1當x變化時,y,y的變化情況如下表-1(-1,0)0(0,1)100+0+無極值極小值0無極值當x=0時,y有極小值且y極小值=0求極值的具體步驟:第一,求導數(shù).第二,令=0求方程的根,第三,列表,檢查在方程根左右的值的符號,如果左正右負,那么f(x)在這個根處取得極大值;如果左負右正,那么f(x)在這個根處取得極小值,如果左右都是正,或者左右都是負,那么f(x)在這根處無極值.如果函數(shù)在某些點處連續(xù)但不可導,也需要考慮這些點是否是極值點 四、課堂練習:1求下列函數(shù)的極值.(1)y=x27x+6 (2)y=x327x(1)解:y=(x27x+6)=2x7令y=0,解得x=.當x變化時,y,y的變化情況如下表.0+極小值當x=時,y有極小值,且y極小值=(2)解:y=(x327x)=3x227=3(x+3)(x3)令y=0,解得x1=3,x2=3.當x變化時,y,y的變化情況如下表-3(-3,3)3+00+極大值54極小值-54當x=3時,y有極大值,且y極大值=54當x=3時,y有極小值,且y極小值=54五、小結(jié) :函數(shù)的極大、極小值的定義以及判別方法.求可導函數(shù)f(x)的極值的三個步驟.還有要弄清函數(shù)的極值是就函數(shù)在某一點附近的小區(qū)間而言的,在整個定義區(qū)間可能有多個極值,且要在這點處連續(xù).可導函數(shù)極值點的導數(shù)為0,但導數(shù)為零的點不一定是極值點,要看這點兩側(cè)的導數(shù)是否異號.函數(shù)的不可導點可能是極值點.