2019-2020年高中數(shù)學(xué) 1.3.1 單調(diào)性與最大(小)值 第一課時(shí)教案精講 新人教A版必修1.doc
2019-2020年高中數(shù)學(xué) 13.1 單調(diào)性與最大(小)值 第一課時(shí)教案精講 新人教A版必修1讀教材填要點(diǎn)1定義域?yàn)镮的函數(shù)f(x)的增減性2函數(shù)的單調(diào)性與單調(diào)區(qū)間如果函數(shù)yf(x)在區(qū)間D上是增函數(shù)或減函數(shù),就說函數(shù)yf(x)在區(qū)間D上具有(嚴(yán)格)的單調(diào)性,區(qū)間D叫做yf(x)的單調(diào)區(qū)間 小問題大思維1定義在(a,b)上的函數(shù)f(x),若存在x1,x2(a,b),使得x1x2時(shí)有f(x1)f(x2),那么f(x)在(a,b)上為增函數(shù),對嗎?提示:不對,如函數(shù)f(x)x2,(1x1),存在x1,x2,顯然x1x2,有f(x1)f(x2),但f(x)x2在(1,1)上不是增函數(shù)2定義在(a,b)上的函數(shù)f(x),若有無窮多對x1,x2(a,b)使得x1<x2時(shí)有f(x1)<f(x2),那么f(x)在(a,b)上是增函數(shù),對嗎?提示:不對,如上述函數(shù)f(x)x2(1x1)3畫出函數(shù)y的圖象,你認(rèn)為:若f(x)在區(qū)間A上為減函數(shù),在區(qū)間B上也為減函數(shù),則f(x)在AB上也為減函數(shù),對嗎?提示:不對,如函數(shù)f(x)(x0),在(,0)上為減函數(shù),在(0,)上也為減函數(shù),但在(,0)(0,)上既不是增函數(shù),也不是減函數(shù)證明或判斷函數(shù)的單調(diào)性例1求證:函數(shù)f(x)在(0,)上是減函數(shù),在(,0)上是增函數(shù)自主解答對于任意的x1,x2(,0),且x1<x2,有f(x1)f(x2)x1<x2<0,x2x1>0,x1x2<0,xx>0.f(x1)f(x2)<0,即f(x1)<f(x2)函數(shù)f(x)在(,0)上是增函數(shù)對于任意的x1,x2(0,),且x1<x2,有f(x1)f(x2).0<x1<x2,x2x1>0,x2x1>0,xx>0.f(x1)f(x2)>0,即f(x1)>f(x2)函數(shù)f(x)在(0,)上是減函數(shù)利用定義證明函數(shù)單調(diào)性的步驟如下:(1)取值:設(shè)x1,x2是該區(qū)間內(nèi)的任意兩個(gè)值,且x1<x2;(2)作差變形:作差f(x1)f(x2),并通過因式分解、通分、配方、有理化等手段,轉(zhuǎn)化為易判斷正負(fù)的式子;(3)定號:確定f(x1)f(x2)的符號;,(4)結(jié)論:根據(jù)f(x1)f(x2)的符合及定義判斷單調(diào)性.1證明函數(shù)f(x)x3x在R上是增函數(shù)證明:設(shè)x1,x2R,且x1<x2,則f(x1)f(x2)(xx1)(xx2)(xx)(x1x2)(x1x2)(xx1x2x1)(x1x2)(x1x2)2x1x1<x2,x1x2<0.又(x1x2)2x1>0,f(x1)f(x2)<0,即f(x1)<f(x2)f(x)在R上是增函數(shù)求函數(shù)的單調(diào)區(qū)間例2畫出函數(shù)yx22|x|3的圖象,并指出函數(shù)的單調(diào)區(qū)間自主解答yx22|x|3函數(shù)圖象如圖所示函數(shù)在(,1,0,1上是增函數(shù),函數(shù)在1,0,1,)上是減函數(shù)函數(shù)的單調(diào)增區(qū)間是(,1和0,1,單調(diào)減區(qū)間是1,0和1,)(1)對于初等函數(shù)(ykxb,yax2bxc,yf(k,x)單調(diào)區(qū)間的確定,常借助于函數(shù)圖象去探求,而且這些函數(shù)的單調(diào)區(qū)間作為常識性的內(nèi)容,可以直接使用.(2)對于含有絕對值的函數(shù),往往轉(zhuǎn)化成分段函數(shù)去處理其圖象,借助于圖象的變化趨勢分析相應(yīng)函數(shù)的單調(diào)性(區(qū)間).2求函數(shù)f(x)|x1|2x4|的單調(diào)遞減區(qū)間解:f(x)|x1|2x4|畫出函數(shù)f(x)的圖象如下圖所示,函數(shù)f(x)的單調(diào)減區(qū)間是2,)由函數(shù)的單調(diào)性求參數(shù)取值范圍例3已知函數(shù)f(x)x22ax3在區(qū)間1,2上單調(diào),求實(shí)數(shù)a的取值范圍自主解答函數(shù)f(x)x22ax3的圖象開口向上,對稱軸為直線xa,畫出草圖如圖所示由圖象可知函數(shù)在(,a和a,)上分別單調(diào),因此要使函數(shù)f(x)在區(qū)間1,2上單調(diào),只需a1或a2(其中當(dāng)a1時(shí),函數(shù)f(x)在區(qū)間1,2上單調(diào)遞增;當(dāng)a2時(shí),函數(shù)f(x)在區(qū)間1,2上單調(diào)遞減,從而a(,12,)“若函數(shù)單調(diào)增區(qū)間為2,),則a為何值?”解:f(x)開口向上,且函數(shù)單調(diào)增區(qū)間為2,),對稱軸xa2,即a2. (1)已知函數(shù)的單調(diào)性求參數(shù)的取值范圍的方法是:視參數(shù)為已知數(shù),依據(jù)函數(shù)的圖象或單調(diào)性定義,確定函數(shù)的單調(diào)區(qū)間,與已知單調(diào)區(qū)間比較求參. (2)常見函數(shù)的單調(diào)性列表如下:函數(shù)單調(diào)性一次函數(shù)yaxb(a0)a>0時(shí),在R上單調(diào)遞增;a<0時(shí),在R上單調(diào)遞減反比例函數(shù)y(a0)a>0時(shí),單調(diào)減區(qū)間是(,0)和(0,);a<0時(shí),單調(diào)增區(qū)間是(,0)和(0,)二次函數(shù)ya(xm)2n(a0)a>0時(shí),單調(diào)減區(qū)間是(,m,單調(diào)增區(qū)間是m,);a<0時(shí),單調(diào)減區(qū)間是m,),單調(diào)增區(qū)間是(,m(3)需注意若一函數(shù)在區(qū)間a,b上是單調(diào)的,則該函數(shù)在此區(qū)間的任意子集上也是單調(diào)的3若函數(shù)f(x)(2a1)xb是R上的減函數(shù),則a的取值范圍為_解析:f(x)(2a1)xb為一次函數(shù),當(dāng)2a1<0即a<時(shí),f(x)是R上的減函數(shù)答案:(,)解題高手妙解題同樣的結(jié)果,不一樣的過程,節(jié)省解題時(shí)間,也是得分!求f(x)x22ax1在區(qū)間0,2上的最大值和最小值巧思先求出函數(shù)的對稱軸xa,分四種情況a<0,0a<1,1a<2,a2時(shí),討論函數(shù)f(x)在區(qū)間0,2上的單調(diào)性,再結(jié)合圖形,可分別求出相應(yīng)的最小值和最大值妙解f(x)(xa)21a2,對稱軸為直線xa,當(dāng)a<0時(shí),由圖1可知f(x)minf(0)1,f(x)maxf(2)34a.當(dāng)0a<1時(shí),由圖2可知,f(x)minf(a)1a2,f(x)maxf(2)34a.當(dāng)1a<2時(shí),由圖3可知,f(x)minf(a)1a2,f(x)maxf(0)1;當(dāng)a2時(shí),由圖4可知,f(x)minf(2)34a,f(x)maxf(0)1.1函數(shù)yx2x1(xR)的遞減區(qū)間是()A.B1,)C. D(,)解析:yx2x1(x)2.其對稱軸為x,在對稱軸左側(cè)單調(diào)遞減,x時(shí)單調(diào)遞減答案:C2函數(shù)f(x)|x|和g(x)x(2x)的遞增區(qū)間依次是()A(,0,(,1 B(,0,1,)C0,),(,1 D0,),1,)解析:f(x)|x|的圖象如圖甲,g(x)x(2x)x22x(x22x1)1(x1)21的圖象如圖乙,易知選C.答案:C3已知函數(shù)yax和y在(0,)上都是減函數(shù),則函數(shù)f(x)bxa在R上是()A減函數(shù)且f(0)<0 B增函數(shù)且f(0)<0C減函數(shù)且f(0)>0 D增函數(shù)且f(0)>0解析:yax和y在(0,)都是減函數(shù),a<0,b<0.f(x)bxa為減函數(shù)且f(0)a<0.答案:A4若函數(shù)f(x)|2xa|的單調(diào)遞增區(qū)間是3,),則a_.解析:由f(x)可得函數(shù)f(x)的單調(diào)遞增區(qū)間為,),故3,解得a6.答案:65若函數(shù)f(x)則f(x)的遞減區(qū)間是_解析:分段函數(shù)當(dāng)x1時(shí),f(x)2x1為增函數(shù),當(dāng)x<1時(shí),f(x)5x為減函數(shù)答案:(,1)6已知f(x),試判斷f(x)在1,)上的單調(diào)性,并證明解:f(x)在 1,)上是增函數(shù)證明:任取x1,x21,),且x1x2,則f(x2)f(x1)1x1x2,x2x10,x2x10,0.f(x2)f(x1)0,即f(x2)f(x1)故函數(shù)f(x)在1,)上是增函數(shù)一、選擇題1下圖中是定義在區(qū)間5,5上的函數(shù)yf(x),則下列關(guān)于函數(shù)f(x)的說法錯(cuò)誤的是()A函數(shù)在區(qū)間5,3上單調(diào)遞增B函數(shù)在區(qū)間1,4上單調(diào)遞增C函數(shù)在區(qū)間3,14,5上單調(diào)遞減D函數(shù)在區(qū)間5,5上沒有單調(diào)性解析:若一個(gè)函數(shù)出現(xiàn)兩個(gè)或兩個(gè)以上的單調(diào)區(qū)間時(shí),不能用連接比如05,但f(0)f(5)答案:C2函數(shù)f(x)2x2mx3,當(dāng)x2,)時(shí),f(x)為增函數(shù),當(dāng)x(,2時(shí),函數(shù)f(x)為減函數(shù),則m等于()A4 B8C8 D無法確定解析:由題意可知x2是f(x)的對稱軸,2,m8.答案:B3下列有關(guān)函數(shù)單調(diào)性的說法,不正確的是()A若f(x)為增函數(shù),g(x)為增函數(shù),則f(x)g(x)為增函數(shù)B若f(x)為減函數(shù),g(x)為減函數(shù),則f(x)g(x)為減函數(shù)C若f(x)為增函數(shù),g(x)為減函數(shù),則f(x)g(x)為增函數(shù)D若f(x)為減函數(shù),g(x)為增函數(shù),則f(x)g(x)為減函數(shù)解析:若f(x)為增函數(shù),g(x)為減函數(shù),則f(x)g(x)的增減性不確定例如f(x)x2為R上的增函數(shù),當(dāng)g(x)x時(shí),則f(x)g(x)2為增函數(shù);當(dāng)g(x)3x,則f(x)g(x)2x2在R上為減函數(shù)不能確定f(x)g(x)的單調(diào)性答案:C4下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是()Ay|x1| By3xCy Dyx24解析:B、C、D在(0,1)上均為減函數(shù),只有A項(xiàng)在(0,1)上是增函數(shù)答案:A二、填空題5已知函數(shù)f(x)為區(qū)間1,1上的增函數(shù),則滿足f(x)<f()的實(shí)數(shù)x的取值范圍為_解析:f(x)在1,1上為增函數(shù),且f(x)<f(),得1x<.答案:1,)6若f(x)x22ax與g(x)在區(qū)間1,2上都是減函數(shù),則a的取值范圍是_解析:由f(x)x22ax在1,2上是減函數(shù)可得a1,由g(x)在1,2上是減函數(shù)可得a0.0a1.答案:(0,17函數(shù)f(x)|2x1|的遞減區(qū)間是_解析:函數(shù)f(x)|2x1|的圖象如下所示:遞減區(qū)間為(,答案:(,8函數(shù)f(x)|x|在區(qū)間a,)上為減函數(shù),則實(shí)數(shù)a的取值范圍是_解析:函數(shù)f(x)|x|的圖象為:觀察圖象可知a0.答案:0,)三、解答題9證明函數(shù)f(x)在定義域上是減函數(shù)證明:f(x)的定義域?yàn)?,),設(shè)0x1<x2,則x1x2<0,且f(x2)f(x1)()() .x1x2<0,>0,f(x2)f(x1)<0,即f(x2)<f(x1)f(x)在它的定義域0,)上是減函數(shù)10函數(shù)f(x)是定義在(0,)上的減函數(shù),對任意的x,y(0,),都有f(xy)f(x)f(y)1,且f(4)5.(1)求f(2)的值;(2)解不等式f(m2)3.解:(1)f(4)f(22)2f(2)15,f(2)3.(2)由f(m2)3,得f(m2)f(2)f(x)是(0,)上的減函數(shù)解得m4.不等式的解集為m|m4