2019-2020年高中物理 第四部分《動(dòng)量和能量》競(jìng)賽講座講稿 新人教版.doc
-
資源ID:2623786
資源大?。?span id="woz58be" class="font-tahoma">149KB
全文頁數(shù):12頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請(qǐng)知曉。
|
2019-2020年高中物理 第四部分《動(dòng)量和能量》競(jìng)賽講座講稿 新人教版.doc
2019-2020年高中物理 第四部分動(dòng)量和能量競(jìng)賽講座講稿 新人教版一、沖量和動(dòng)量1、沖力(Ft圖象特征) 沖量。沖量定義、物理意義沖量在Ft圖象中的意義從定義角度求變力沖量(F對(duì)t的平均作用力)2、動(dòng)量的定義動(dòng)量矢量性與運(yùn)算二、動(dòng)量定理1、定理的基本形式與表達(dá)2、分方向的表達(dá)式:Ix =Px ,Iy =Py 3、定理推論:動(dòng)量變化率等于物體所受的合外力。即=F外 三、動(dòng)量守恒定律1、定律、矢量性2、條件a、原始條件與等效b、近似條件c、某個(gè)方向上滿足a或b,可在此方向應(yīng)用動(dòng)量守恒定律四、功和能1、功的定義、標(biāo)量性,功在FS圖象中的意義2、功率,定義求法和推論求法3、能的概念、能的轉(zhuǎn)化和守恒定律4、功的求法a、恒力的功:W = FScos= FSF = FS Sb、變力的功:基本原則過程分割與代數(shù)累積;利用FS圖象(或先尋求F對(duì)S的平均作用力)c、解決功的“疑難雜癥”時(shí),把握“功是能量轉(zhuǎn)化的量度”這一要點(diǎn)五、動(dòng)能、動(dòng)能定理1、動(dòng)能(平動(dòng)動(dòng)能)2、動(dòng)能定理a、W的兩種理解b、動(dòng)能定理的廣泛適用性六、機(jī)械能守恒1、勢(shì)能a、保守力與耗散力(非保守力) 勢(shì)能(定義:Ep = W保)b、力學(xué)領(lǐng)域的三種勢(shì)能(重力勢(shì)能、引力勢(shì)能、彈性勢(shì)能)及定量表達(dá)2、機(jī)械能3、機(jī)械能守恒定律a、定律內(nèi)容b、條件與拓展條件(注意系統(tǒng)劃分)c、功能原理:系統(tǒng)機(jī)械能的增量等于外力與耗散內(nèi)力做功的代數(shù)和。七、碰撞與恢復(fù)系數(shù)1、碰撞的概念、分類(按碰撞方向分類、按碰撞過程機(jī)械能損失分類)碰撞的基本特征:a、動(dòng)量守恒;b、位置不超越;c、動(dòng)能不膨脹。2、三種典型的碰撞a、彈性碰撞:碰撞全程完全沒有機(jī)械能損失。滿足m1v10 + m2v20 = m1v1 + m2v2 m1 + m2 = m1 + m2解以上兩式(注意技巧和“不合題意”解的舍棄)可得:v1 = , v2 = 對(duì)于結(jié)果的討論:當(dāng)m1 = m2 時(shí),v1 = v20 ,v2 = v10 ,稱為“交換速度”;當(dāng)m1 m2 ,且v20 = 0時(shí),v1 v10 ,v2 0 ,小物碰大物,原速率返回;當(dāng)m1 m2 ,且v20 = 0時(shí),v1 v10 ,v2 2v10 ,b、非(完全)彈性碰撞:機(jī)械能有損失(機(jī)械能損失的內(nèi)部機(jī)制簡(jiǎn)介),只滿足動(dòng)量守恒定律c、完全非彈性碰撞:機(jī)械能的損失達(dá)到最大限度;外部特征:碰撞后兩物體連為一個(gè)整體,故有v1 = v2 = 3、恢復(fù)系數(shù):碰后分離速度(v2 v1)與碰前接近速度(v10 v20)的比值,即:e = 。根據(jù)“碰撞的基本特征”,0 e 1 。當(dāng)e = 0 ,碰撞為完全非彈性;當(dāng)0 e 1 ,碰撞為非彈性;當(dāng)e = 1 ,碰撞為彈性。八、“廣義碰撞”物體的相互作用1、當(dāng)物體之間的相互作用時(shí)間不是很短,作用不是很強(qiáng)烈,但系統(tǒng)動(dòng)量仍然守恒時(shí),碰撞的部分規(guī)律仍然適用,但已不符合“碰撞的基本特征”(如:位置可能超越、機(jī)械能可能膨脹)。此時(shí),碰撞中“不合題意”的解可能已經(jīng)有意義,如彈性碰撞中v1 = v10 ,v2 = v20的解。2、物體之間有相對(duì)滑動(dòng)時(shí),機(jī)械能損失的重要定勢(shì):E = E內(nèi) = f滑S相 ,其中S相指相對(duì)路程。第二講 重要模型與專題一、動(dòng)量定理還是動(dòng)能定理?物理情形:太空飛船在宇宙飛行時(shí),和其它天體的萬有引力可以忽略,但是,飛船會(huì)定時(shí)遇到太空垃圾的碰撞而受到阻礙作用。設(shè)單位體積的太空均勻分布垃圾n顆,每顆的平均質(zhì)量為m ,垃圾的運(yùn)行速度可以忽略。飛船維持恒定的速率v飛行,垂直速度方向的橫截面積為S ,與太空垃圾的碰撞后,將垃圾完全粘附住。試求飛船引擎所應(yīng)提供的平均推力F 。模型分析:太空垃圾的分布并不是連續(xù)的,對(duì)飛船的撞擊也不連續(xù),如何正確選取研究對(duì)象,是本題的前提。建議充分理解“平均”的含義,這樣才能相對(duì)模糊地處理垃圾與飛船的作用過程、淡化“作用時(shí)間”和所考查的“物理過程時(shí)間”的差異。物理過程需要人為截取,對(duì)象是太空垃圾。先用動(dòng)量定理推論解題。取一段時(shí)間t ,在這段時(shí)間內(nèi),飛船要穿過體積V = Svt的空間,遭遇nV顆太空垃圾,使它們獲得動(dòng)量P ,其動(dòng)量變化率即是飛船應(yīng)給予那部分垃圾的推力,也即飛船引擎的推力。 = = = = = nmSv2如果用動(dòng)能定理,能不能解題呢?同樣針對(duì)上面的物理過程,由于飛船要前進(jìn)x = vt的位移,引擎推力須做功W = x ,它對(duì)應(yīng)飛船和被粘附的垃圾的動(dòng)能增量,而飛船的Ek為零,所以:W = Mv2即:vt = (n m Svt)v2得到: = nmSv2兩個(gè)結(jié)果不一致,不可能都是正確的。分析動(dòng)能定理的解題,我們不能發(fā)現(xiàn),垃圾與飛船的碰撞是完全非彈性的,需要消耗大量的機(jī)械能,因此,認(rèn)為“引擎做功就等于垃圾動(dòng)能增加”的觀點(diǎn)是錯(cuò)誤的。但在動(dòng)量定理的解題中,由于I = t ,由此推出的 = 必然是飛船對(duì)垃圾的平均推力,再對(duì)飛船用平衡條件,的大小就是引擎推力大小了。這個(gè)解沒有毛病可挑,是正確的。(學(xué)生活動(dòng))思考:如圖1所示,全長(zhǎng)L、總質(zhì)量為M的柔軟繩子,盤在一根光滑的直桿上,現(xiàn)用手握住繩子的一端,以恒定的水平速度v將繩子拉直。忽略地面阻力,試求手的拉力F 。解:解題思路和上面完全相同。答:二、動(dòng)量定理的分方向應(yīng)用物理情形:三個(gè)質(zhì)點(diǎn)A、B和C ,質(zhì)量分別為m1 、m2和m3 ,用拉直且不可伸長(zhǎng)的繩子AB和BC相連,靜止在水平面上,如圖2所示,AB和BC之間的夾角為()。現(xiàn)對(duì)質(zhì)點(diǎn)C施加以沖量I ,方向沿BC ,試求質(zhì)點(diǎn)A開始運(yùn)動(dòng)的速度。模型分析:首先,注意“開始運(yùn)動(dòng)”的理解,它指繩子恰被拉直,有作用力和沖量產(chǎn)生,但是繩子的方位尚未發(fā)生變化。其二,對(duì)三個(gè)質(zhì)點(diǎn)均可用動(dòng)量定理,但是,B質(zhì)點(diǎn)受沖量不在一條直線上,故最為復(fù)雜,可采用分方向的形式表達(dá)。其三,由于兩段繩子不可伸長(zhǎng),故三質(zhì)點(diǎn)的瞬時(shí)速度可以尋求到兩個(gè)約束關(guān)系。下面具體看解題過程繩拉直瞬間,AB繩對(duì)A、B兩質(zhì)點(diǎn)的沖量大小相等(方向相反),設(shè)為I1 ,BC繩對(duì)B、C兩質(zhì)點(diǎn)的沖量大小相等(方向相反),設(shè)為I2 ;設(shè)A獲得速度v1(由于A受合沖量只有I1 ,方向沿AB ,故v1的反向沿AB),設(shè)B獲得速度v2(由于B受合沖量為+,矢量和既不沿AB ,也不沿BC方向,可設(shè)v2與AB繩夾角為,如圖3所示),設(shè)C獲得速度v3(合沖量+沿BC方向,故v3沿BC方向)。對(duì)A用動(dòng)量定理,有:I1 = m1 v1 B的動(dòng)量定理是一個(gè)矢量方程:+= m2 ,可化為兩個(gè)分方向的標(biāo)量式,即:I2cosI1 = m2 v2cos I2sin= m2 v2sin 質(zhì)點(diǎn)C的動(dòng)量定理方程為:I I2 = m3 v3 AB繩不可伸長(zhǎng),必有v1 = v2cos BC繩不可伸長(zhǎng),必有v2cos() = v3 六個(gè)方程解六個(gè)未知量(I1 、I2 、v1 、v2 、v3 、)是可能的,但繁復(fù)程度非同一般。解方程要注意條理性,否則易造成混亂。建議采取如下步驟1、先用式消掉v2 、v3 ,使六個(gè)一級(jí)式變成四個(gè)二級(jí)式:I1 = m1 v1 I2cosI1 = m2 v1 I2sin= m2 v1 tg I I2 = m3 v1(cos+ sintg) 2、解式消掉,使四個(gè)二級(jí)式變成三個(gè)三級(jí)式:I1 = m1 v1 I2cosI1 = m2 v1 I = m3 v1 cos+ I2 3、最后對(duì)式消I1 、I2 ,解v1就方便多了。結(jié)果為:v1 = (學(xué)生活動(dòng):訓(xùn)練解方程的條理和耐心)思考:v2的方位角等于多少?解:解“二級(jí)式”的即可。代入消I1 ,得I2的表達(dá)式,將I2的表達(dá)式代入就行了。答:= arc tg()。三、動(dòng)量守恒中的相對(duì)運(yùn)動(dòng)問題物理情形:在光滑的水平地面上,有一輛車,車內(nèi)有一個(gè)人和N個(gè)鉛球,系統(tǒng)原來處于靜止?fàn)顟B(tài)?,F(xiàn)車內(nèi)的人以一定的水平速度將鉛球一個(gè)一個(gè)地向車外拋出,車子和人將獲得反沖速度。第一過程,保持每次相對(duì)地面拋球速率均為v ,直到將球拋完;第二過程,保持每次相對(duì)車子拋球速率均為v ,直到將球拋完。試問:哪一過程使車子獲得的速度更大?模型分析:動(dòng)量守恒定律必須選取研究對(duì)象之外的第三方(或第四、第五方)為參照物,這意味著,本問題不能選車子為參照。一般選地面為參照系,這樣對(duì)“第二過程”的鉛球動(dòng)量表達(dá),就形成了難點(diǎn),必須引進(jìn)相對(duì)速度與絕對(duì)速度的關(guān)系。至于“第一過程”,比較簡(jiǎn)單:N次拋球和將N個(gè)球一次性拋出是完全等效的。設(shè)車和人的質(zhì)量為M ,每個(gè)鉛球的質(zhì)量為m 。由于矢量的方向落在一條直線上,可以假定一個(gè)正方向后,將矢量運(yùn)算化為代數(shù)運(yùn)算。設(shè)車速方向?yàn)檎?,且第一過程獲得的速度大小為V1 第二過程獲得的速度大小為V2 。第一過程,由于鉛球每次的動(dòng)量都相同,可將多次拋球看成一次拋出。車子、人和N個(gè)球動(dòng)量守恒。0 = Nm(-v) + MV1 得:V1 = v 第二過程,必須逐次考查鉛球與車子(人)的作用。第一個(gè)球與(N1)個(gè)球、人、車系統(tǒng)作用,完畢后,設(shè)“系統(tǒng)”速度為u1 。值得注意的是,根據(jù)運(yùn)動(dòng)合成法則,鉛球?qū)Φ氐乃俣炔⒉皇牵?v),而是(-v + u1)。它們動(dòng)量守恒方程為:0 = m(-v + u1) +M +(N-1)mu1得:u1 =第二個(gè)球與(N -2)個(gè)球、人、車系統(tǒng)作用,完畢后,設(shè)“系統(tǒng)”速度為u2 。它們動(dòng)量守恒方程為:M+(N-1)mu1 = m(-v + u2) +M+(N-2)mu2 得:u2 = + 第三個(gè)球與(N -2)個(gè)球、人、車系統(tǒng)作用,完畢后,設(shè)“系統(tǒng)”速度為u3 。鉛球?qū)Φ氐乃俣仁牵?v + u3)。它們動(dòng)量守恒方程為:M+(N-2)mu2 = m(-v + u3) +M+(N-3)mu3得:u3 = + + 以此類推(過程注意:先找uN和uN-1關(guān)系,再看uN和v的關(guān)系,不要急于化簡(jiǎn)通分),uN的通式已經(jīng)可以找出:V2 = uN = + + + + 即:V2 = 我們?cè)賹⑹礁膶懗桑篤1 = 不難發(fā)現(xiàn),式和式都有N項(xiàng),每項(xiàng)的分子都相同,但式中每項(xiàng)的分母都比式中的分母小,所以有:V1 V2 。結(jié)論:第一過程使車子獲得的速度較大。(學(xué)生活動(dòng))思考:質(zhì)量為M的車上,有n個(gè)質(zhì)量均為m的人,它們靜止在光滑的水平地面上?,F(xiàn)在車上的人以相對(duì)車大小恒為v、方向水平向后的初速往車下跳。第一過程,N個(gè)人同時(shí)跳下;第二過程,N個(gè)人依次跳下。試問:哪一次車子獲得的速度較大?解:第二過程結(jié)論和上面的模型完全相同,第一過程結(jié)論為V1 = 。答:第二過程獲得速度大。四、反沖運(yùn)動(dòng)中的一個(gè)重要定式物理情形:如圖4所示,長(zhǎng)度為L(zhǎng)、質(zhì)量為M的船停止在靜水中(但未拋錨),船頭上有一個(gè)質(zhì)量為m的人,也是靜止的?,F(xiàn)在令人在船上開始向船尾走動(dòng),忽略水的阻力,試問:當(dāng)人走到船尾時(shí),船將會(huì)移動(dòng)多遠(yuǎn)?(學(xué)生活動(dòng))思考:人可不可能勻速(或勻加速)走動(dòng)?當(dāng)人中途停下休息,船有速度嗎?人的全程位移大小是L嗎?本系統(tǒng)選船為參照,動(dòng)量守恒嗎?模型分析:動(dòng)量守恒展示了已知質(zhì)量情況下的速度關(guān)系,要過渡到位移關(guān)系,需要引進(jìn)運(yùn)動(dòng)學(xué)的相關(guān)規(guī)律。根據(jù)實(shí)際情況(人必須停在船尾),人的運(yùn)動(dòng)不可能是勻速的,也不可能是勻加速的,運(yùn)動(dòng)學(xué)的規(guī)律應(yīng)選擇S = t 。為尋求時(shí)間t ,則要抓人和船的位移約束關(guān)系。對(duì)人、船系統(tǒng),針對(duì)“開始走動(dòng)中間任意時(shí)刻”過程,應(yīng)用動(dòng)量守恒(設(shè)末態(tài)人的速率為v ,船的速率為V),令指向船頭方向?yàn)檎?,則矢量關(guān)系可以化為代數(shù)運(yùn)算,有:0 = MV + m(-v) 即:mv = MV 由于過程的末態(tài)是任意選取的,此式展示了人和船在任一時(shí)刻的瞬時(shí)速度大小關(guān)系。而且不難推知,對(duì)中間的任一過程,兩者的平均速度也有這種關(guān)系。即:m = M 設(shè)全程的時(shí)間為t ,乘入式兩邊,得:mt = Mt設(shè)s和S分別為人和船的全程位移大小,根據(jù)平均速度公式,得:m s = M S 受船長(zhǎng)L的約束,s和S具有關(guān)系:s + S = L 解、可得:船的移動(dòng)距離 S =L(應(yīng)用動(dòng)量守恒解題時(shí),也可以全部都用矢量關(guān)系,但這時(shí)“位移關(guān)系”表達(dá)起來難度大一些必須用到運(yùn)動(dòng)合成與分解的定式。時(shí)間允許的話,可以做一個(gè)對(duì)比介紹。)另解:質(zhì)心運(yùn)動(dòng)定律人、船系統(tǒng)水平方向沒有外力,故系統(tǒng)質(zhì)心無加速度系統(tǒng)質(zhì)心無位移。先求出初態(tài)系統(tǒng)質(zhì)心(用它到船的質(zhì)心的水平距離x表達(dá)。根據(jù)力矩平衡知識(shí),得:x = ),又根據(jù),末態(tài)的質(zhì)量分布與初態(tài)比較,相對(duì)整體質(zhì)心是左右對(duì)稱的。弄清了這一點(diǎn)后,求解船的質(zhì)心位移易如反掌。(學(xué)生活動(dòng))思考:如圖5所示,在無風(fēng)的天空,人抓住氣球下面的繩索,和氣球恰能靜止平衡,人和氣球地質(zhì)量分別為m和M ,此時(shí)人離地面高h(yuǎn) 。現(xiàn)在人欲沿懸索下降到地面,試問:要人充分安全地著地,繩索至少要多長(zhǎng)?解:和模型幾乎完全相同,此處的繩長(zhǎng)對(duì)應(yīng)模型中的“船的長(zhǎng)度”(“充分安全著地”的含義是不允許人脫離繩索跳躍著地)。答:h 。(學(xué)生活動(dòng))思考:如圖6所示,兩個(gè)傾角相同的斜面,互相倒扣著放在光滑的水平地面上,小斜面在大斜面的頂端。將它們無初速釋放后,小斜面下滑,大斜面后退。已知大、小斜面的質(zhì)量分別為M和m ,底邊長(zhǎng)分別為a和b ,試求:小斜面滑到底端時(shí),大斜面后退的距離。解:水平方向動(dòng)量守恒。解題過程從略。答:(ab)。進(jìn)階應(yīng)用:如圖7所示,一個(gè)質(zhì)量為M ,半徑為R的光滑均質(zhì)半球,靜置于光滑水平桌面上,在球頂有一個(gè)質(zhì)量為m的質(zhì)點(diǎn),由靜止開始沿球面下滑。試求:質(zhì)點(diǎn)離開球面以前的軌跡。解說:質(zhì)點(diǎn)下滑,半球后退,這個(gè)物理情形和上面的雙斜面問題十分相似,仔細(xì)分析,由于同樣滿足水平方向動(dòng)量守恒,故我們介紹的“定式”是適用的。定式解決了水平位移(位置)的問題,豎直坐標(biāo)則需要從數(shù)學(xué)的角度想一些辦法。為尋求軌跡方程,我們需要建立一個(gè)坐標(biāo):以半球球心O為原點(diǎn),沿質(zhì)點(diǎn)滑下一側(cè)的水平軸為x坐標(biāo)、豎直軸為y坐標(biāo)。由于質(zhì)點(diǎn)相對(duì)半球總是做圓周運(yùn)動(dòng)的(離開球面前),有必要引入相對(duì)運(yùn)動(dòng)中半球球心O的方位角來表達(dá)質(zhì)點(diǎn)的瞬時(shí)位置,如圖8所示。由“定式”,易得:x = Rsin 而由圖知:y = Rcos 不難看出,、兩式實(shí)際上已經(jīng)是一個(gè)軌跡的參數(shù)方程。為了明確軌跡的性質(zhì),我們可以將參數(shù)消掉,使它們成為: + = 1這樣,特征就明顯了:質(zhì)點(diǎn)的軌跡是一個(gè)長(zhǎng)、短半軸分別為R和R的橢圓。五、功的定義式中S怎么取值?在求解功的問題時(shí),有時(shí)遇到力的作用點(diǎn)位移與受力物體的(質(zhì)心)位移不等,S是取力的作用點(diǎn)的位移,還是取物體(質(zhì)心)的位移呢?我們先看下面一些事例。1、如圖9所示,人用雙手壓在臺(tái)面上推講臺(tái),結(jié)果雙手前進(jìn)了一段位移而講臺(tái)未移動(dòng)。試問:人是否做了功?2、在本“部分”第3頁圖1的模型中,求拉力做功時(shí),S是否可以取繩子質(zhì)心的位移?3、人登靜止的樓梯,從一樓到二樓。樓梯是否做功?4、如圖10所示,雙手用等大反向的力F壓固定汽缸兩邊的活塞,活塞移動(dòng)相同距離S,汽缸中封閉氣體被壓縮。施力者(人)是否做功?在以上四個(gè)事例中,S若取作用點(diǎn)位移,只有第1、2、4例是做功的(注意第3例,樓梯支持力的作用點(diǎn)并未移動(dòng),而只是在不停地交換作用點(diǎn)),S若取物體(受力者)質(zhì)心位移,只有第2、3例是做功的,而且,盡管第2例都做了功,數(shù)字并不相同。所以,用不同的判據(jù)得出的結(jié)論出現(xiàn)了本質(zhì)的分歧。面對(duì)這些似是而非的“疑難雜癥”,我們先回到“做功是物體能量轉(zhuǎn)化的量度”這一根本點(diǎn)。第1例,手和講臺(tái)面摩擦生了熱,內(nèi)能的生成必然是由人的生物能轉(zhuǎn)化而來,人肯定做了功。S宜取作用點(diǎn)的位移;第2例,求拉力的功,在前面已經(jīng)闡述,S取作用點(diǎn)位移為佳;第3例,樓梯不需要輸出任何能量,不做功,S取作用點(diǎn)位移;第4例,氣體內(nèi)能的增加必然是由人輸出的,壓力做功,S取作用點(diǎn)位移。但是,如果分別以上四例中的受力者用動(dòng)能定理,第1例,人對(duì)講臺(tái)不做功,S取物體質(zhì)心位移;第2例,動(dòng)能增量對(duì)應(yīng)S取L/2時(shí)的值物體質(zhì)心位移;第4例,氣體宏觀動(dòng)能無增量,S取質(zhì)心位移。(第3例的分析暫時(shí)延后。)以上分析在援引理論知識(shí)方面都沒有錯(cuò),如何使它們統(tǒng)一?原來,功的概念有廣義和狹義之分。在力學(xué)中,功的狹義概念僅指機(jī)械能轉(zhuǎn)換的量度;而在物理學(xué)中功的廣義概念指除熱傳遞外的一切能量轉(zhuǎn)換的量度。所以功也可定義為能量轉(zhuǎn)換的量度。一個(gè)系統(tǒng)總能量的變化,常以系統(tǒng)對(duì)外做功的多少來量度。能量可以是機(jī)械能、電能、熱能、化學(xué)能等各種形式,也可以多種形式的能量同時(shí)發(fā)生轉(zhuǎn)化。由此可見,上面分析中,第一個(gè)理論對(duì)應(yīng)的廣義的功,第二個(gè)理論對(duì)應(yīng)的則是狹義的功,它們都沒有錯(cuò)誤,只是在現(xiàn)階段的教材中還沒有將它們及時(shí)地區(qū)分開來而已。而且,我們不難歸納:求廣義的功,S取作用點(diǎn)的位移;求狹義的功,S取物體(質(zhì)心)位移。那么我們?cè)诮忸}中如何處理呢?這里給大家?guī)c(diǎn)建議: 1、抽象地講“某某力做的功”一般指廣義的功;2、講“力對(duì)某物體做的功”常常指狹義的功;3、動(dòng)能定理中的功肯定是指狹義的功。當(dāng)然,求解功地問題時(shí),還要注意具體問題具體分析。如上面的第3例,就相對(duì)復(fù)雜一些。如果認(rèn)為所求為狹義的功,S取質(zhì)心位移,是做了功,但結(jié)論仍然是難以令人接受的。下面我們來這樣一個(gè)處理:將復(fù)雜的形變物體(人)看成這樣一個(gè)相對(duì)理想的組合:剛性物體下面連接一壓縮的彈簧(如圖11所示),人每一次蹬梯,腿伸直將軀體重心上舉,等效為彈簧將剛性物體舉起。這樣,我們就不難發(fā)現(xiàn),做功的是人的雙腿而非地面,人既是輸出能量(生物能)的機(jī)構(gòu),也是得到能量(機(jī)械能)的機(jī)構(gòu)這里的物理情形更象是一種生物情形。本題所求的功應(yīng)理解為廣義功為宜。以上四例有一些共同的特點(diǎn):要么,受力物體情形比較復(fù)雜(形變,不能簡(jiǎn)單地看成一個(gè)質(zhì)點(diǎn)。如第2、第3、第4例),要么,施力者和受力者之間的能量轉(zhuǎn)化不是封閉的(涉及到第三方,或機(jī)械能以外的形式。如第1例)。以后,當(dāng)遇到這樣的問題時(shí),需要我們慎重對(duì)待。(學(xué)生活動(dòng))思考:足夠長(zhǎng)的水平傳送帶維持勻速v運(yùn)轉(zhuǎn)。將一袋貨物無初速地放上去,在貨物達(dá)到速度v之前,與傳送帶的摩擦力大小為f ,對(duì)地的位移為S 。試問:求摩擦力的功時(shí),是否可以用W = fS ?解:按一般的理解,這里應(yīng)指廣義的功(對(duì)應(yīng)傳送帶引擎輸出的能量),所以“位移”取作用點(diǎn)的位移。注意,在此處有一個(gè)隱含的“交換作用點(diǎn)”的問題,仔細(xì)分析,不難發(fā)現(xiàn),每一個(gè)(相對(duì)皮帶不動(dòng)的)作用點(diǎn)的位移為2S 。(另解:求貨物動(dòng)能的增加和與皮帶摩擦生熱的總和。)答:否。(學(xué)生活動(dòng))思考:如圖12所示,人站在船上,通過拉一根固定在鐵樁的纜繩使船靠岸。試問:纜繩是否對(duì)船和人的系統(tǒng)做功?解:分析同上面的“第3例”。答:否。六、機(jī)械能守恒與運(yùn)動(dòng)合成(分解)的綜合物理情形:如圖13所示,直角形的剛性桿被固定,水平和豎直部分均足夠長(zhǎng)。質(zhì)量分別為m1和m2的A、B兩個(gè)有孔小球,串在桿上,且被長(zhǎng)為L(zhǎng)的輕繩相連。忽略兩球的大小,初態(tài)時(shí),認(rèn)為它們的位置在同一高度,且繩處于拉直狀態(tài)。現(xiàn)無初速地將系統(tǒng)釋放,忽略一切摩擦,試求B球運(yùn)動(dòng)L/2時(shí)的速度v2 。模型分析:A、B系統(tǒng)機(jī)械能守恒。A、B兩球的瞬時(shí)速度不等,其關(guān)系可據(jù)“第三部分”知識(shí)介紹的定式(滑輪小船)去尋求。(學(xué)生活動(dòng))A球的機(jī)械能是否守恒?B球的機(jī)械能是否守恒?系統(tǒng)機(jī)械能守恒的理由是什么(兩法分析:a、“微元法”判斷兩個(gè)WT的代數(shù)和為零;b、無非彈性碰撞,無摩擦,沒有其它形式能的生成)?由“拓展條件”可以判斷,A、B系統(tǒng)機(jī)械能守恒,(設(shè)末態(tài)A球的瞬時(shí)速率為v1 )過程的方程為:m2g = + 在末態(tài),繩與水平桿的瞬時(shí)夾角為30,設(shè)繩子的瞬時(shí)遷移速率為v ,根據(jù)“第三部分”知識(shí)介紹的定式,有:v1 = v/cos30, v2 = v/sin30兩式合并成:v1 = v2 tg30= v2/ 解、兩式,得:v2 = 七、動(dòng)量和能量的綜合(一)物理情形:如圖14所示,兩根長(zhǎng)度均為L(zhǎng)的剛性輕桿,一端通過質(zhì)量為m的球形鉸鏈連接,另一端分別與質(zhì)量為m和2m的小球相連。將此裝置的兩桿合攏,鉸鏈在上、豎直地放在水平桌面上,然后輕敲一下,使兩小球向兩邊滑動(dòng),但兩桿始終保持在豎直平面內(nèi)。忽略一切摩擦,試求:兩桿夾角為90時(shí),質(zhì)量為2m的小球的速度v2 。模型分析:三球系統(tǒng)機(jī)械能守恒、水平方向動(dòng)量守恒,并注意約束關(guān)系兩桿不可伸長(zhǎng)。(學(xué)生活動(dòng))初步判斷:左邊小球和球形鉸鏈的速度方向會(huì)怎樣?設(shè)末態(tài)(桿夾角90)左邊小球的速度為v1(方向:水平向左),球形鉸鏈的速度為v(方向:和豎直方向夾角斜向左),對(duì)題設(shè)過程,三球系統(tǒng)機(jī)械能守恒,有:mg( L-L) = m + mv2 + 2m 三球系統(tǒng)水平方向動(dòng)量守恒,有:mv1 + mvsin= 2mv2 左邊桿子不形變,有:v1cos45= vcos(45-) 右邊桿子不形變,有:vcos(45+) = v2cos45 四個(gè)方程,解四個(gè)未知量(v1 、v2 、v和),是可行的。推薦解方程的步驟如下1、兩式用v2替代v1和v ,代入式,解值,得:tg= 1/4 2、在回到、兩式,得:v1 = v2 , v = v2 3、將v1 、v的替代式代入式解v2即可。結(jié)果:v2 = (學(xué)生活動(dòng))思考:球形鉸鏈觸地前一瞬,左球、鉸鏈和右球的速度分別是多少?解:由兩桿不可形變,知三球的水平速度均為零,為零。一個(gè)能量方程足以解題。答:0 、 、0 。(學(xué)生活動(dòng))思考:當(dāng)兩桿夾角為90時(shí),右邊小球的位移是多少?解:水平方向用“反沖位移定式”,或水平方向用質(zhì)心運(yùn)動(dòng)定律。答: 。進(jìn)階應(yīng)用:在本講模型“四、反沖”的“進(jìn)階應(yīng)用”(見圖8)中,當(dāng)質(zhì)點(diǎn)m滑到方位角時(shí)(未脫離半球),質(zhì)點(diǎn)的速度v的大小、方向怎樣?解說:此例綜合應(yīng)用運(yùn)動(dòng)合成、動(dòng)量守恒、機(jī)械能守恒知識(shí),數(shù)學(xué)運(yùn)算比較繁復(fù),是一道考查學(xué)生各種能力和素質(zhì)的難題。據(jù)運(yùn)動(dòng)的合成,有: = + = - 其中必然是沿地面向左的,為了書寫方便,我們?cè)O(shè)其大小為v2 ;必然是沿半球瞬時(shí)位置切線方向(垂直瞬時(shí)半徑)的,設(shè)大小為v相 。根據(jù)矢量減法的三角形法則,可以得到(設(shè)大小為v1)的示意圖,如圖16所示。同時(shí),我們將v1的x、y分量v1x和v1y也描繪在圖中。由圖可得:v1y =(v2 + v1x)tg 質(zhì)點(diǎn)和半球系統(tǒng)水平方向動(dòng)量守恒,有:Mv2 = mv1x 對(duì)題設(shè)過程,質(zhì)點(diǎn)和半球系統(tǒng)機(jī)械能守恒,有:mgR(1-cos) = M + m ,即:mgR(1-cos) = M + m( + ) 三個(gè)方程,解三個(gè)未知量(v2 、v1x 、v1y)是可行的,但數(shù)學(xué)運(yùn)算繁復(fù),推薦步驟如下1、由、式得:v1x = v2 , v1y = (tg) v2 2、代入式解v2 ,得:v2 =3、由 = + 解v1 ,得:v1 =v1的方向:和水平方向成角,= arctg = arctg()這就是最后的解。一個(gè)附屬結(jié)果:質(zhì)點(diǎn)相對(duì)半球的瞬時(shí)角速度 = = 。八、動(dòng)量和能量的綜合(二)物理情形:如圖17所示,在光滑的水平面上,質(zhì)量為M = 1 kg的平板車左端放有質(zhì)量為m = 2 kg的鐵塊,鐵塊與車之間的摩擦因素= 0.5 。開始時(shí),車和鐵塊以共同速度v = 6 m/s向右運(yùn)動(dòng),車與右邊的墻壁發(fā)生正碰,且碰撞是彈性的。車身足夠長(zhǎng),使鐵塊不能和墻相碰。重力加速度g = 10 m/s2 ,試求:1、鐵塊相對(duì)車運(yùn)動(dòng)的總路程;2、平板車第一次碰墻后所走的總路程。模型分析:本模型介紹有兩對(duì)相互作用時(shí)的處理常規(guī)。能量關(guān)系介紹摩擦生熱定式的應(yīng)用。由于過程比較復(fù)雜,動(dòng)量分析還要輔助以動(dòng)力學(xué)分析,綜合程度較高。由于車與墻壁的作用時(shí)短促而激烈的,而鐵塊和車的作用是舒緩而柔和的,當(dāng)兩對(duì)作用同時(shí)發(fā)生時(shí),通常處理成“讓短時(shí)作用完畢后,長(zhǎng)時(shí)作用才開始”(這樣可以使問題簡(jiǎn)化)。在此處,車與墻壁碰撞時(shí),可以認(rèn)為鐵塊與車的作用尚未發(fā)生,而是在車與墻作用完了之后,才開始與鐵塊作用。規(guī)定向右為正向,將矢量運(yùn)算化為代數(shù)運(yùn)算。車第一次碰墻后,車速變?yōu)関 ,然后與速度仍為v的鐵塊作用,動(dòng)量守恒,作用完畢后,共同速度v1 = = ,因方向?yàn)檎?,必朝墻運(yùn)動(dòng)。(學(xué)生活動(dòng))車會(huì)不會(huì)達(dá)共同速度之前碰墻?動(dòng)力學(xué)分析:車離墻的最大位移S = ,反向加速的位移S= ,其中a = a1 = ,故S S ,所以,車碰墻之前,必然已和鐵塊達(dá)到共同速度v1 。車第二次碰墻后,車速變?yōu)関1 ,然后與速度仍為v1的鐵塊作用,動(dòng)量守恒,作用完畢后,共同速度v2 = = = ,因方向?yàn)檎?,必朝墻運(yùn)動(dòng)。車第三次碰墻,共同速度v3 = = ,朝墻運(yùn)動(dòng)。以此類推,我們可以概括鐵塊和車的運(yùn)動(dòng)情況鐵塊:勻減速向右勻速向右勻減速向右勻速向右平板車:勻減速向左勻加速向右勻速向右勻減速向左勻加速向右勻速向右顯然,只要車和鐵塊還有共同速度,它們總是要碰墻,所以最后的穩(wěn)定狀態(tài)是:它們一起停在墻角(總的末動(dòng)能為零)。1、全程能量關(guān)系:對(duì)鐵塊和車系統(tǒng),Ek =E內(nèi) ,且,E內(nèi) = f滑 S相 ,即:(m + M)v2 = mgS相 代入數(shù)字得:S相 = 5.4 m2、平板車向右運(yùn)動(dòng)時(shí)比較復(fù)雜,只要去每次向左運(yùn)動(dòng)的路程的兩倍即可。而向左是勻減速的,故第一次:S1 = 第二次:S2 = = 第三次:S3 = = n次碰墻的總路程是:S = 2( S1 + S2 + S3 + + Sn )= ( 1 + + + + ) = ( 1 + + + + )碰墻次數(shù)n,代入其它數(shù)字,得:S = 4.05 m(學(xué)生活動(dòng))質(zhì)量為M 、程度為L(zhǎng)的木板固定在光滑水平面上,另一個(gè)質(zhì)量為m的滑塊以水平初速v0沖上木板,恰好能從木板的另一端滑下?,F(xiàn)解除木板的固定(但無初速),讓相同的滑塊再次沖上木板,要求它仍能從另一端滑下,其初速度應(yīng)為多少?解:由第一過程,得滑動(dòng)摩擦力f = 。第二過程應(yīng)綜合動(dòng)量和能量關(guān)系(“恰滑下”的臨界是:滑塊達(dá)木板的另一端,和木板具有共同速度,設(shè)為v ),設(shè)新的初速度為m =( m + M )vm - ( m + M )v2 = fL解以上三式即可。答:= v0 。第三講 典型例題解析