2019-2020年高中數(shù)學(xué) 第三章《空間向量及其運算》教案2 新人教A版選修2-1.doc
-
資源ID:2613792
資源大小:79.50KB
全文頁數(shù):2頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
2019-2020年高中數(shù)學(xué) 第三章《空間向量及其運算》教案2 新人教A版選修2-1.doc
2019-2020年高中數(shù)學(xué) 第三章空間向量及其運算教案2 新人教A版選修2-1一、課題:空間向量及其運算(2) 二、教學(xué)目標:1理解共線向量定理和共面向量定理及它們的推論;2掌握空間直線、空間平面的向量參數(shù)方程和線段中點的向量公式三、教學(xué)重、難點:共線、共面定理及其應(yīng)用四、教學(xué)過程:(一)復(fù)習:空間向量的概念及表示;(二)新課講解:1共線(平行)向量:如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量。讀作:平行于,記作:2共線向量定理:對空間任意兩個向量的充要條件是存在實數(shù),使(唯一)推論:如果為經(jīng)過已知點,且平行于已知向量的直線,那么對任一點,點在直線上的充要條件是存在實數(shù),滿足等式,其中向量叫做直線的方向向量。在上取,則式可化為或當時,點是線段的中點,此時和都叫空間直線的向量參數(shù)方程,是線段的中點公式3向量與平面平行:已知平面和向量,作,如果直線平行于或在內(nèi),那么我們說向量平行于平面,記作:通常我們把平行于同一平面的向量,叫做共面向量說明:空間任意的兩向量都是共面的4共面向量定理:如果兩個向量不共線,與向量共面的充要條件是存在實數(shù)使推論:空間一點位于平面內(nèi)的充分必要條件是存在有序?qū)崝?shù)對,使或?qū)臻g任一點,有上面式叫做平面的向量表達式(三)例題分析:例1已知三點不共線,對平面外任一點,滿足條件,試判斷:點與是否一定共面?解:由題意:,即,所以,點與共面說明:在用共面向量定理及其推論的充要條件進行向量共面判斷的時候,首先要選擇恰當?shù)某湟獥l件形式,然后對照形式將已知條件進行轉(zhuǎn)化運算【練習】:對空間任一點和不共線的三點,問滿足向量式 (其中)的四點是否共面?解:,點與點共面例2已知,從平面外一點引向量,(1)求證:四點共面;(2)平面平面解:(1)四邊形是平行四邊形,共面;(2),又,所以,平面平面五、課堂練習:課本第96頁練習第1、2、3題六、課堂小結(jié):1共線向量定理和共面向量定理及其推論;2空間直線、平面的向量參數(shù)方程和線段中點向量公式七、作業(yè):1已知兩個非零向量不共線,如果,求證:共面2已知,若,求實數(shù)的值。3如圖,分別為正方體的棱的中點,求證:(1)四點共面;(2)平面平面4已知分別是空間四邊形邊的中點,(1)用向量法證明:四點共面;(2)用向量法證明:平面