2019-2020年高中數(shù)學(xué)第四章《圓的一般方程》教案新人教A版必修2.doc
-
資源ID:2596454
資源大?。?span id="6j5vian" class="font-tahoma">94.50KB
全文頁(yè)數(shù):4頁(yè)
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
2019-2020年高中數(shù)學(xué)第四章《圓的一般方程》教案新人教A版必修2.doc
2019-2020年高中數(shù)學(xué)第四章圓的一般方程教案新人教A版必修2三維目標(biāo): 知識(shí)與技能: (1)在掌握?qǐng)A的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑掌握方程x2y2DxEyF=0表示圓的條件 (2)能通過(guò)配方等手段,把圓的一般方程化為圓的標(biāo)準(zhǔn)方程能用待定系數(shù)法求圓的方程。(3):培養(yǎng)學(xué)生探索發(fā)現(xiàn)及分析解決問(wèn)題的實(shí)際能力。過(guò)程與方法:通過(guò)對(duì)方程x2y2DxEyF=0表示圓的條件的探究,培養(yǎng)學(xué)生探索發(fā)現(xiàn)及分析解決問(wèn)題的實(shí)際能力。情感態(tài)度價(jià)值觀:滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新,勇于探索。教學(xué)重點(diǎn):圓的一般方程的代數(shù)特征,一般方程與標(biāo)準(zhǔn)方程間的互化,根據(jù)已知條件確定方程中的系數(shù),D、E、F教學(xué)難點(diǎn):對(duì)圓的一般方程的認(rèn)識(shí)、掌握和運(yùn)用 教 具:多媒體、實(shí)物投影儀教學(xué)過(guò)程:課題引入:?jiǎn)栴}:求過(guò)三點(diǎn)A(0,0),B(1,1),C(4,2)的圓的方程。利用圓的標(biāo)準(zhǔn)方程解決此問(wèn)題顯然有些麻煩,得用直線的知識(shí)解決又有其簡(jiǎn)單的局限性,那么這個(gè)問(wèn)題有沒(méi)有其它的解決方法呢?帶著這個(gè)問(wèn)題我們來(lái)共同研究圓的方程的另一種形式圓的一般方程。探索研究:請(qǐng)同學(xué)們寫出圓的標(biāo)準(zhǔn)方程:(xa)2(yb)2=r2,圓心(a,b),半徑r把圓的標(biāo)準(zhǔn)方程展開(kāi),并整理:x2y22ax2bya2b2r2=0取得 這個(gè)方程是圓的方程反過(guò)來(lái)給出一個(gè)形如x2y2DxEyF=0的方程,它表示的曲線一定是圓嗎?把x2y2DxEyF=0配方得 (配方過(guò)程由學(xué)生去完成)這個(gè)方程是不是表示圓? (1)當(dāng)D2E24F0時(shí),方程表示(1)當(dāng)時(shí),表示以(-,-)為圓心,為半徑的圓;(2)當(dāng)時(shí),方程只有實(shí)數(shù)解,即只表示一個(gè)點(diǎn)(-,-);(3)當(dāng)時(shí),方程沒(méi)有實(shí)數(shù)解,因而它不表示任何圖形綜上所述,方程表示的曲線不一定是圓 只有當(dāng)時(shí),它表示的曲線才是圓,我們把形如的表示圓的方程稱為圓的一般方程我們來(lái)看圓的一般方程的特點(diǎn):(啟發(fā)學(xué)生歸納) (1)x2和y2的系數(shù)相同,不等于0沒(méi)有xy這樣的二次項(xiàng) (2)圓的一般方程中有三個(gè)特定的系數(shù)D、E、F,因之只要求出這三個(gè)系數(shù),圓的方程就確定了(3)、與圓的標(biāo)準(zhǔn)方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標(biāo)準(zhǔn)方程則指出了圓心坐標(biāo)與半徑大小,幾何特征較明顯。知識(shí)應(yīng)用與解題研究:例1:判斷下列二元二次方程是否表示圓的方程?如果是,請(qǐng)求出圓的圓心及半徑。學(xué)生自己分析探求解決途徑:、用配方法將其變形化成圓的標(biāo)準(zhǔn)形式。、運(yùn)用圓的一般方程的判斷方法求解。但是,要注意對(duì)于來(lái)說(shuō),這里的.例2:求過(guò)三點(diǎn)A(0,0),B(1,1),C(4,2)的圓的方程,并求這個(gè)圓的半徑長(zhǎng)和圓心坐標(biāo)。 分析:據(jù)已知條件,很難直接寫出圓的標(biāo)準(zhǔn)方程,而圓的一般方程則需確定三個(gè)系數(shù),而條件恰給出三點(diǎn)坐標(biāo),不妨試著先寫出圓的一般方程 解:設(shè)所求的圓的方程為:在圓上,所以它們的坐標(biāo)是方程的解.把它們的坐標(biāo)代入上面的方程,可以得到關(guān)于的三元一次方程組,即解此方程組,可得:所求圓的方程為:;得圓心坐標(biāo)為(4,-3).或?qū)⒆筮吪浞交癁閳A的標(biāo)準(zhǔn)方程,,從而求出圓的半徑,圓心坐標(biāo)為(4,-3) 學(xué)生討論交流,歸納得出使用待定系數(shù)法的一般步驟:、 根據(jù)提議,選擇標(biāo)準(zhǔn)方程或一般方程;、 根據(jù)條件列出關(guān)于a、b、r或D、E、F的方程組;、 解出a、b、r或D、E、F,代入標(biāo)準(zhǔn)方程或一般方程。例3、已知線段AB的端點(diǎn)B的坐標(biāo)是(4,3),端點(diǎn)A在圓上運(yùn)動(dòng),求線段AB的中點(diǎn)M的軌跡方程。分析:如圖點(diǎn)A運(yùn)動(dòng)引起點(diǎn)M運(yùn)動(dòng),而點(diǎn)A在已知圓上運(yùn)動(dòng),點(diǎn)A的坐標(biāo)滿足方程。建立點(diǎn)M與點(diǎn)A坐標(biāo)之間的關(guān)系,就可以建立點(diǎn)M的坐標(biāo)滿足的條件,求出點(diǎn)M的軌跡方程。 解:設(shè)點(diǎn)M的坐標(biāo)是(x,y),點(diǎn)A的坐標(biāo)是 上運(yùn)動(dòng),所以點(diǎn)A的坐標(biāo)滿足方程,即 把代入,得 課堂練習(xí):課堂練習(xí)第1、2、3題小結(jié) :1對(duì)方程的討論(什么時(shí)候可以表示圓) 2與標(biāo)準(zhǔn)方程的互化 3用待定系數(shù)法求圓的方程 4求與圓有關(guān)的點(diǎn)的軌跡。課后作業(yè):習(xí)題4.1第2、3、6題