歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

2019-2020年高中數(shù)學 3.4曲線與方程教案 北師大選修2-1.doc

  • 資源ID:2595930       資源大?。?span id="6qv2uvv" class="font-tahoma">94KB        全文頁數(shù):6頁
  • 資源格式: DOC        下載積分:9.9積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

2019-2020年高中數(shù)學 3.4曲線與方程教案 北師大選修2-1.doc

2019-2020年高中數(shù)學 3.4曲線與方程教案 北師大選修2-1一、教學目標(一)知識教學點使學生掌握常用動點的軌跡以及求動點軌跡方程的常用技巧與方法(二)能力訓(xùn)練點通過對求軌跡方程的常用技巧與方法的歸納和介紹,培養(yǎng)學生綜合運用各方面知識的能力(三)學科滲透點通過對求軌跡方程的常用技巧與方法的介紹,使學生掌握常用動點的軌跡,為學習物理等學科打下扎實的基礎(chǔ)二、教材分析1重點:求動點的軌跡方程的常用技巧與方法(解決辦法:對每種方法用例題加以說明,使學生掌握這種方法)2難點:作相關(guān)點法求動點的軌跡方法(解決辦法:先使學生了解相關(guān)點法的思路,再用例題進行講解)教具準備:與教材內(nèi)容相關(guān)的資料。教學設(shè)想:激發(fā)學生的學習熱情,激發(fā)學生的求知欲,培養(yǎng)嚴謹?shù)膶W習態(tài)度,培養(yǎng)積極進取的精神三、教學過程學生探究過程:(一)復(fù)習引入大家知道,平面解析幾何研究的主要問題是:(1)根據(jù)已知條件,求出表示平面曲線的方程;(2)通過方程,研究平面曲線的性質(zhì)我們已經(jīng)對常見曲線圓、橢圓、雙曲線以及拋物線進行過這兩個方面的研究,今天在上面已經(jīng)研究的基礎(chǔ)上來對根據(jù)已知條件求曲線的軌跡方程的常見技巧與方法進行系統(tǒng)分析(二)幾種常見求軌跡方程的方法1直接法由題設(shè)所給(或通過分析圖形的幾何性質(zhì)而得出)的動點所滿足的幾何條件列出等式,再用坐標代替這等式,化簡得曲線的方程,這種方法叫直接法例1(1)求和定圓x2+y2=k2的圓周的距離等于k的動點P的軌跡方程;(2)過點A(a,o)作圓Ox2+y2=R2(aRo)的割線,求割線被圓O截得弦的中點的軌跡對(1)分析:動點P的軌跡是不知道的,不能考查其幾何特征,但是給出了動點P的運動規(guī)律:|OP|=2R或|OP|=0解:設(shè)動點P(x,y),則有|OP|=2R或|OP|=0即x2+y2=4R2或x2+y2=0故所求動點P的軌跡方程為x2+y2=4R2或x2+y2=0對(2)分析:題設(shè)中沒有具體給出動點所滿足的幾何條件,但可以通過分析圖形的幾何性質(zhì)而得出,即圓心與弦的中點連線垂直于弦,它們的斜率互為負倒數(shù)由學生演板完成,解答為:設(shè)弦的中點為M(x,y),連結(jié)OM,則OMAMkOMkAM=-1,其軌跡是以O(shè)A為直徑的圓在圓O內(nèi)的一段弧(不含端點)2定義法利用所學過的圓的定義、橢圓的定義、雙曲線的定義、拋物線的定義直接寫出所求的動點的軌跡方程,這種方法叫做定義法這種方法要求題設(shè)中有定點與定直線及兩定點距離之和或差為定值的條件,或利用平面幾何知識分析得出這些條件直平分線l交半徑OQ于點P(見圖245),當Q點在圓周上運動時,求點P的軌跡方程分析:點P在AQ的垂直平分線上,|PQ|=|PA|又P在半徑OQ上|PO|+|PQ|=R,即|PO|+|PA|=R故P點到兩定點距離之和是定值,可用橢圓定義寫出P點的軌跡方程解:連接PA lPQ,|PA|=|PQ|又P在半徑OQ上|PO|+|PQ|=2由橢圓定義可知:P點軌跡是以O(shè)、A為焦點的橢圓3相關(guān)點法若動點P(x,y)隨已知曲線上的點Q(x0,y0)的變動而變動,且x0、y0可用x、y表示,則將Q點坐標表達式代入已知曲線方程,即得點P的軌跡方程這種方法稱為相關(guān)點法(或代換法)例3 已知拋物線y2=x+1,定點A(3,1)、B為拋物線上任意一點,點P在線段AB上,且有BPPA=12,當B點在拋物線上變動時,求點P的軌跡方程分析:P點運動的原因是B點在拋物線上運動,因此B可作為相關(guān)點,應(yīng)先找出點P與點B的聯(lián)系解:設(shè)點P(x,y),且設(shè)點B(x0,y0)BPPA=12,且P為線段AB的內(nèi)分點4待定系數(shù)法求圓、橢圓、雙曲線以及拋物線的方程常用待定系數(shù)法求例4 已知拋物線y2=4x和以坐標軸為對稱軸、實軸在y軸上的雙曲曲線方程分析:因為雙曲線以坐標軸為對稱軸,實軸在y軸上,所以可設(shè)雙曲線方ax2-4b2x+a2b2=0拋物線和雙曲線僅有兩個公共點,根據(jù)它們的對稱性,這兩個點的橫坐標應(yīng)相等,因此方程ax2-4b2x+a2b2=0應(yīng)有等根=1664-4Q4b2=0,即a2=2b(以下由學生完成)由弦長公式得:即a2b2=4b2-a2(三)鞏固練習用十多分鐘時間作一個小測驗,檢查一下教學效果練習題用一小黑板給出1ABC一邊的兩個端點是B(0,6)和C(0,-6),另兩邊斜率的2點P與一定點F(2,0)的距離和它到一定直線x=8的距離的比是12,求點P的軌跡方程,并說明軌跡是什么圖形?3求拋物線y2=2px(p0)上各點與焦點連線的中點的軌跡方程答案:義法)由中點坐標公式得:(四)、教學反思求曲線的軌跡方程一般地有直接法、定義法、相關(guān)點法、待定系數(shù)法,還有參數(shù)法、復(fù)數(shù)法也是求曲線的軌跡方程的常見方法,這等到講了參數(shù)方程、復(fù)數(shù)以后再作介紹五、布置作業(yè)1兩定點的距離為6,點M到這兩個定點的距離的平方和為26,求點M的軌跡方程2動點P到點F1(1,0)的距離比它到F2(3,0)的距離少2,求P點的軌跡3已知圓x2+y2=4上有定點A(2,0),過定點A作弦AB,并延長到點P,使3|AB|=2|AB|,求動點P的軌跡方程作業(yè)答案:1以兩定點A、B所在直線為x軸,線段AB的垂直平分線為y軸建立直角坐標系,得點M的軌跡方程x2+y2=42|PF2|-|PF|=2,且|F1F2|P點只能在x軸上且x1,軌跡是一條射線六、板書設(shè)計

注意事項

本文(2019-2020年高中數(shù)學 3.4曲線與方程教案 北師大選修2-1.doc)為本站會員(tian****1990)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!