2019-2020年高一數(shù)學(xué)上 第三章 數(shù)列:3.3.1 等差數(shù)列的前n項(xiàng)和1優(yōu)秀教案.doc
-
資源ID:2585170
資源大小:72KB
全文頁(yè)數(shù):4頁(yè)
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
2019-2020年高一數(shù)學(xué)上 第三章 數(shù)列:3.3.1 等差數(shù)列的前n項(xiàng)和1優(yōu)秀教案.doc
2019-2020年高一數(shù)學(xué)上 第三章 數(shù)列:3.3.1 等差數(shù)列的前n項(xiàng)和1優(yōu)秀教案教學(xué)目的:1掌握等差數(shù)列前n項(xiàng)和公式及其獲取思路 2會(huì)用等差數(shù)列的前n項(xiàng)和公式解決一些簡(jiǎn)單的與前n項(xiàng)和有關(guān)的問(wèn)題 教學(xué)重點(diǎn):等差數(shù)列n項(xiàng)和公式的理解、推導(dǎo)及應(yīng)教學(xué)難點(diǎn):靈活應(yīng)用等差數(shù)列前n項(xiàng)公式解決一些簡(jiǎn)單的有關(guān)問(wèn)題授課類型:新授課課時(shí)安排:1課時(shí)教 具:多媒體、實(shí)物投影儀內(nèi)容分析: 本節(jié)是在學(xué)習(xí)了等差數(shù)列的概念和性質(zhì)的基礎(chǔ)上,使學(xué)生掌握等差數(shù)列求和公式,并能利用它求和解決數(shù)列和的最值問(wèn)題等差數(shù)列求和公式的推導(dǎo),采用了倒序相加法,思路的獲得得益于等到差數(shù)列任意的第k項(xiàng)與倒數(shù)第k項(xiàng)的和都等于首項(xiàng)與末項(xiàng)的和這一性質(zhì)的認(rèn)識(shí)和發(fā)現(xiàn)通過(guò)對(duì)等差數(shù)列求和公式的推導(dǎo),使學(xué)生能掌握“倒序相加”數(shù)學(xué)方法教學(xué)過(guò)程:一、復(fù)習(xí)引入:首先回憶一下前幾節(jié)課所學(xué)主要內(nèi)容:1等差數(shù)列的定義: =d ,(n2,nN)2等差數(shù)列的通項(xiàng)公式: (或=pn+q (p、q是常數(shù))3幾種計(jì)算公差d的方法: d= d= d=4等差中項(xiàng):成等差數(shù)列5等差數(shù)列的性質(zhì): m+n=p+q (m, n, p, q N )6數(shù)列的前n項(xiàng)和:數(shù)列中,稱為數(shù)列的前n項(xiàng)和,記為.“小故事”:高斯是偉大的數(shù)學(xué)家,天文學(xué)家,高斯十歲時(shí),有一次老師出了一道題目, 老師說(shuō): “現(xiàn)在給大家出道題目:1+2+100=?”過(guò)了兩分鐘,正當(dāng)大家在:1+2=3;3+3=6;4+6=10算得不亦樂(lè)乎時(shí),高斯站起來(lái)回答說(shuō):“1+2+3+100=5050教師問(wèn):“你是如何算出答案的?高斯回答說(shuō):因?yàn)?+100=101;2+99=101;50+51=101,所以10150=5050” 這個(gè)故事告訴我們:(1)作為數(shù)學(xué)王子的高斯從小就善于觀察,敢于思考,所以他能從一些簡(jiǎn)單的事物中發(fā)現(xiàn)和尋找出某些規(guī)律性的東西(2)該故事還告訴我們求等差數(shù)列前n項(xiàng)和的一種很重要的思想方法,這就是下面我們要介紹的“倒序相加”法 二、講解新課: 如圖,一個(gè)堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放120支,這個(gè)V形架上共放著多少支鉛筆?這是一堆放鉛筆的V形架,這形同前面所接觸過(guò)的堆放鋼管的示意圖,看到此圖,大家都會(huì)很快捷地找到每一層的鉛筆數(shù)與層數(shù)的關(guān)系,而且可以用一個(gè)式子來(lái)表示這種關(guān)系,利用它便可以求出每一層的鉛筆數(shù).那么,這個(gè)V形架上共放著多少支鉛筆呢?這個(gè)問(wèn)題又該如何解決呢?經(jīng)過(guò)分析,我們不難看出,這是一個(gè)等差數(shù)求和問(wèn)題?這個(gè)問(wèn)題,它也類似于剛才我們所遇到的“小故事”問(wèn)題,它可以看成是求等差數(shù)列1,2,3,n,的前120項(xiàng)的和.在上面的求解中,我們發(fā)現(xiàn)所求的和可用首項(xiàng)、末項(xiàng)及項(xiàng)數(shù)n來(lái)表示,且任意的第k項(xiàng)與倒數(shù)第k項(xiàng)的和都等于首項(xiàng)與末項(xiàng)的和,這就啟發(fā)我們?nèi)绾稳デ笠话愕炔顢?shù)列的前n項(xiàng)的和.如果我們可歸納出一計(jì)算式,那么上述問(wèn)題便可迎刃而解.1等差數(shù)列的前項(xiàng)和公式1:證明: +: 由此得: 從而我們可以驗(yàn)證高斯十歲時(shí)計(jì)算上述問(wèn)題的正確性 2 等差數(shù)列的前項(xiàng)和公式2: 用上述公式要求必須具備三個(gè)條件: 但 代入公式1即得: 此公式要求必須已知三個(gè)條件: (有時(shí)比較有用)總之:兩個(gè)公式都表明要求必須已知中三個(gè)公式二又可化成式子:,當(dāng)d0,是一個(gè)常數(shù)項(xiàng)為零的二次式三、例題講解例1 一個(gè)堆放鉛筆的V型的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放120支,這個(gè)V形架上共放著多少支鉛筆?解:由題意可知,這個(gè)V形架上共放著120層鉛筆,且自下而上各層的鉛筆成等差數(shù)列,記為,其中,根據(jù)等差數(shù)列前n項(xiàng)和的公式,得答:V形架上共放著7260支鉛筆例2 等差數(shù)列-10,-6,-2,2,前多少項(xiàng)的和是54?解:設(shè)題中的等差數(shù)列為,前n項(xiàng)為則 由公式可得解之得:(舍去)等差數(shù)列-10,-6,-2,2前9項(xiàng)的和是54例3 .已知等差數(shù)列中=13且=,那么n取何值時(shí),取最大值.解法1:設(shè)公差為d,由=得:313+32d/2=1113+1110d/2d= -2, =13-2(n-1), =15-2n,由即得:6.5n7.5,所以n=7時(shí),取最大值.解法2:由解1得d= -2,又a1=13所以 = - n+14 n = -(n-7)+49當(dāng)n=7,取最大值對(duì)等差數(shù)列前項(xiàng)和的最值問(wèn)題有兩種方法:(1) 利用:當(dāng)>0,d<0,前n項(xiàng)和有最大值可由0,且0,求得n的值當(dāng)<0,d>0,前n項(xiàng)和有最小值可由0,且0,求得n的值(2) 利用:由利用二次函數(shù)配方法求得最值時(shí)n的值四、練習(xí):1求集合的元素個(gè)數(shù),并求這些元素的和 解:由得 正整數(shù)共有14個(gè)即中共有14個(gè)元素 即:7,14,21,98 是 答:略2. 已知一個(gè)等差數(shù)列的前10項(xiàng)的和是310,前20項(xiàng)的和是1220, 求其前項(xiàng)和的公式. 解:由題設(shè): 得: 五、小結(jié) 本節(jié)課學(xué)習(xí)了以下內(nèi)容:1.等差數(shù)列的前項(xiàng)和公式1: 2.等差數(shù)列的前項(xiàng)和公式2: 3.,當(dāng)d0,是一個(gè)常數(shù)項(xiàng)為零的二次式4.對(duì)等差數(shù)列前項(xiàng)和的最值問(wèn)題有兩種方法:(3) 利用:當(dāng)>0,d<0,前n項(xiàng)和有最大值可由0,且0,求得n的值當(dāng)<0,d>0,前n項(xiàng)和有最小值可由0,且0,求得n的值(4) 利用:二次函數(shù)配方法求得最值時(shí)n的值六、課后作業(yè):已知等差數(shù)列的前項(xiàng)和為,前項(xiàng)和為,求前項(xiàng)和解:由題設(shè) 而.