2019-2020年高中數(shù)學(xué) 1.4.2《全稱量詞與存在量詞(二)量詞否定》教案 新人教選修2-1.doc
2019-2020年高中數(shù)學(xué) 1.4.2全稱量詞與存在量詞(二)量詞否定教案 新人教選修2-1教學(xué)目標(biāo):利用日常生活中的例子和數(shù)學(xué)的命題介紹對量詞命題的否定,使學(xué)生進(jìn)一步理解全稱量詞、存在量詞的作用.教學(xué)重點:全稱量詞與存在量詞命題間的轉(zhuǎn)化;教學(xué)難點:隱蔽性否定命題的確定;課 型:新授課教學(xué)手段:多媒體教學(xué)過程:一、創(chuàng)設(shè)情境數(shù)學(xué)命題中出現(xiàn)“全部”、“所有”、“一切”、“任何”、“任意”、“每一個”等與“存在著”、“有”、“有些”、“某個”、“至少有一個”等的詞語,在邏輯中分別稱為全稱量詞與存在性量詞(用符號分別記為“ ”與“”來表示);由這樣的量詞構(gòu)成的命題分別稱為全稱命題與存在性命題。在全稱命題與存在性命題的邏輯關(guān)系中,都容易判斷,但它們的否定形式是我們困惑的癥結(jié)所在。二、活動嘗試問題1:指出下列命題的形式,寫出下列命題的否定。(1)所有的矩形都是平行四邊形; (2)每一個素數(shù)都是奇數(shù);(3)"xR,x2-2x+10分析:(1)",否定:存在一個矩形不是平行四邊形;(2),否定:存在一個素數(shù)不是奇數(shù);(3),否定:$xR,x2-2x+1<0;這些命題和它們的否定在形式上有什么變化?結(jié)論:從命題形式上看,這三個全稱命題的否定都變成了存在性命題.三、師生探究$問題2:寫出命題的否定(1)p:$ xR,x22x+20;(2)p:有的三角形是等邊三角形;(3)p:有些函數(shù)沒有反函數(shù);(4)p:存在一個四邊形,它的對角線互相垂直且平分;分析:(1)" xR,x22x+2>0;(2)任何三角形都不是等邊三角形;(3)任何函數(shù)都有反函數(shù);(4)對于所有的四邊形,它的對角線不可能互相垂直或平分;從集合的運(yùn)算觀點剖析:,四、數(shù)學(xué)理論1.全稱命題、存在性命題的否定一般地,全稱命題P:" xM,有P(x)成立;其否定命題P為:$xM,使P(x)不成立。存在性命題P:$xM,使P(x)成立;其否定命題P為:" xM,有P(x)不成立。用符號語言表示:P:"M, p(x)否定為 P: $M, P(x)P:$M, p(x)否定為 P: "M, P(x)在具體操作中就是從命題P把全稱性的量詞改成存在性的量詞,存在性的量詞改成全稱性的量詞,并把量詞作用范圍進(jìn)行否定。即須遵循下面法則:否定全稱得存在,否定存在得全稱,否定肯定得否定,否定否定得肯定.2.關(guān)鍵量詞的否定詞語是一定是都是大于小于且詞語的否定不是一定不是不都是小于或等于大于或等于或詞語必有一個至少有n個至多有一個所有x成立所有x不成立詞語的否定一個也沒有至多有n-1個至少有兩個存在一個x不成立存在有一個成立五、鞏固運(yùn)用例1 寫出下列全稱命題的否定:(1)p:所有人都晨練;(2)p:"xR,x2x+1>0;(3)p:平行四邊形的對邊相等;(4)p:$ xR,x2x+10;分析:(1) P:有的人不晨練;(2)$ xR,x2x+10;(3)存在平行四邊形,它的的對邊不相等;(4)"xR,x2x+10;例2 寫出下列命題的否定。(1) 所有自然數(shù)的平方是正數(shù)。 (2) 任何實數(shù)x都是方程5x-12=0的根。 (3) 對任意實數(shù)x,存在實數(shù)y,使x+y0. (4) 有些質(zhì)數(shù)是奇數(shù)。 解:(1)的否定:有些自然數(shù)的平方不是正數(shù)。 (2)的否定:存在實數(shù)x不是方程5x-12=0的根。 (3)的否定:存在實數(shù)x,對所有實數(shù)y,有x+y0。 (4)的否定:所有的質(zhì)數(shù)都不是奇數(shù)。 解題中會遇到省略了“所有,任何,任意”等量詞的簡化形式,如“若x3,則x29”。在求解中極易誤當(dāng)為簡單命題處理;這種情形下時應(yīng)先將命題寫成完整形式,再依據(jù)法則來寫出其否定形式。 例3 寫出下列命題的否定。 (1) 若x24 則x2.。 (2) 若m0,則x2+x-m=0有實數(shù)根。 (3) 可以被5整除的整數(shù),末位是0。 (4) 被8整除的數(shù)能被4整除。 (5) 若一個四邊形是正方形,則它的四條邊相等。 解(1)否定:存在實數(shù),雖然滿足4,但2?;蛘哒f:存在小于或等于2的數(shù),滿足4。(完整表達(dá)為對任意的實數(shù)x, 若x24 則x2)(2)否定:雖然實數(shù)m0,但存在一個,使+ -m=0無實數(shù)根。(原意表達(dá):對任意實數(shù)m,若m0,則x2+x-m=0有實數(shù)根。)(3)否定:存在一個可以被5整除的整數(shù),其末位不是0。(4)否定:存在一個數(shù)能被8整除,但不能被4整除.(原意表達(dá)為所有能被8整除的數(shù)都能被4整除)(5)否定:存在一個四邊形,雖然它是正方形,但四條邊中至少有兩條不相等。(原意表達(dá)為無論哪個四邊形,若它是正方形,則它的四條邊中任何兩條都相等。)例4 寫出下列命題的非命題與否命題,并判斷其真假性。(1)p:若xy,則5x5y;(2)p:若x2+x2,則x2-x2;(3)p:正方形的四條邊相等;(4)p:已知a,b為實數(shù),若x2+ax+b0有非空實解集,則a2-4b0。解:(1) P:若 xy,則5x5y; 假命題 否命題:若xy,則5x5y;真命題(2) P:若x2+x2,則x2-x2;真命題 否命題:若x2+x2,則x2-x2);假命題。 (3) P:存在一個四邊形,盡管它是正方形,然而四條邊中至少有兩條邊不相等;假命題。 否命題:若一個四邊形不是正方形,則它的四條邊不相等。假命題。(4) P:存在兩個實數(shù)a,b,雖然滿足x2+ax+b0有非空實解集,但使a2-4b0。假命題。 否命題:已知a,b為實數(shù),若x2+ax+b0沒有非空實解集,則a2-4b0。真命題。評注:命題的否定與否命題是完全不同的概念。其理由:1任何命題均有否定,無論是真命題還是假命題;而否命題僅針對命題“若P則q”提出來的。2命題的否定(非)是原命題的矛盾命題,兩者的真假性必然是一真一假,一假一真;而否命題與原命題可能是同真同假,也可能是一真一假。3 原命題“若P則q” 的形式,它的非命題“若p,則q”;而它的否命題為 “若p,則q”,既否定條件又否定結(jié)論。六、回顧反思在教學(xué)中,務(wù)必理清各類型命題形式結(jié)構(gòu)、性質(zhì)關(guān)系,才能真正準(zhǔn)確地完整地表達(dá)出命題的否定,才能避犯邏輯性錯誤,才能更好把邏輯知識負(fù)載于其它知識之上,達(dá)到培養(yǎng)和發(fā)展學(xué)生的邏輯思維能力。七、課后練習(xí)1命題p:存在實數(shù)m,使方程x2mx10有實數(shù)根,則“非p”形式的命題是( )A.存在實數(shù)m,使得方程x2mx10無實根;B.不存在實數(shù)m,使得方程x2mx10有實根;C.對任意的實數(shù)m,使得方程x2mx10有實根;D.至多有一個實數(shù)m,使得方程x2mx10有實根;2有這樣一段演繹推理是這樣的“有些有理數(shù)是分?jǐn)?shù),整數(shù)是有理數(shù),則整數(shù)是分?jǐn)?shù)”結(jié)論顯然是錯誤的,是因為( )A大前提錯誤 B小前提錯誤 C推理形式錯誤 D非以上錯誤3命題“"xR,x2-x+3>0”的否定是 4“末位數(shù)字是0或5的整數(shù)能被5整除”的否定形式是 否命題是 5寫出下列命題的否定,并判斷其真假:(1)p:"mR,方程x2+x-m=0必有實根; (2)q:$R,使得x2+x+10; 6寫出下列命題的“非P”命題,并判斷其真假:(1)若m>1,則方程x2-2x+m=0有實數(shù)根(2)平方和為0的兩個實數(shù)都為0(3)若是銳角三角形, 則的任何一個內(nèi)角是銳角(4)若abc=0,則a,b,c中至少有一為0(5)若(x-1)(x-2)=0 ,則x1,x2八、參考答案:1 B2C3$ xR,x2-x+304否定形式:末位數(shù)是0或5的整數(shù),不能被5整除 否命題:末位數(shù)不是0且不是5的整數(shù),不能被5整除5(1)p:$mR,方程x2+x-m=0無實根;真命題。(2)q:"R,使得x2+x+1>0;真命題。6 若m>1,則方程x2-2x+m=0無實數(shù)根,(真);平方和為0的兩個實數(shù)不都為0(假);若是銳角三角形, 則的任何一個內(nèi)角不都是銳角(假);若abc=0,則a,b,c中沒有一個為0(假);若(x-1)(x-2)=0,則 或,(真)