2019-2020年高中數(shù)學(xué) 3.2.1 導(dǎo)數(shù)的概念二教案 北師大選修1-1.doc
-
資源ID:2564537
資源大?。?span id="zrxbr9h" class="font-tahoma">100.50KB
全文頁數(shù):6頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。
|
2019-2020年高中數(shù)學(xué) 3.2.1 導(dǎo)數(shù)的概念二教案 北師大選修1-1.doc
2019-2020年高中數(shù)學(xué) 3.2.1 導(dǎo)數(shù)的概念二教案 北師大選修1-1一、教學(xué)過程:教學(xué)環(huán)節(jié)內(nèi) 容師生活動設(shè)計意圖一復(fù)習(xí)引入 提出問題【回顧1】當(dāng)運動員從10米高臺跳水時,從騰空到進入水面的過程中,不同時刻的速度是不同的.假設(shè)t秒后運動員相對地面的高度為:,問在2秒時運動員的瞬時速度為多少?【回顧2】已知曲線C是函數(shù)的圖象,求曲線上點P處的切線斜率.【思考】對瞬時速度和切線的斜率兩個具體問題,解決方法上有什么共同之處?學(xué)生相互交流探討瞬時速度和切線的斜率兩個具體問題,解決方法上有什么共同之處.針對新概念創(chuàng)設(shè)相應(yīng)的學(xué)生熟悉的問題情境,讓學(xué)生從概念的現(xiàn)實原型,體驗、感受直觀背景和概念間的關(guān)系,為學(xué)生主動建構(gòu)新知提供自然的生長點. 類比探索 形成概念歸納共性 揭示本質(zhì)研究對象求解問題求解方法本質(zhì)思想具體例子物體運動規(guī)律H=h(t)物體在時的瞬時速度求時間增量求位移增量求平均速度求瞬時速度平均速度的極限極限思想曲線y=f(x)曲線上P點處切線的斜率求橫坐標(biāo)增量求縱坐標(biāo)增量求割線的斜率求切線的斜率割線斜率的極限極限思想一般情形函數(shù)y=f(x)函數(shù)在處的變化率?【師生活動】將學(xué)生分成若干學(xué)習(xí)小組,以表格為載體為師生、生生互動搭起積極交流的探究平臺.教師巡視,鼓勵學(xué)生參與,對個別學(xué)有困難的小組加以指導(dǎo).探究后,共同歸納得出:兩個問題的解決在方法、本質(zhì)、思想上都有相同之處.一個是“位移改變量與時間改變量之比”的極限,一個是“縱坐標(biāo)改變量與橫坐標(biāo)改變量之比”的極限.如果舍去它們的具體含義,都可以概括為求平均變化率的極限.【設(shè)計意圖】給學(xué)生創(chuàng)設(shè)探究的平臺,分析瞬時速度和切線的斜率兩個具體問題,討論解決這兩個問題的方法、本質(zhì)、思想上有什么共同之處,引導(dǎo)學(xué)生分析、觀察、歸納,打通揭示事物本質(zhì)的思維通道.教學(xué)環(huán)節(jié)內(nèi) 容師生活動設(shè)計意圖類比探索 形成概念類比遷移 形成概念【思考】考慮求一般函數(shù)y=f(x) 在點到+之間的平均變化率的極限問題,也就是怎樣計算函數(shù)在點處的變化率?引出導(dǎo)數(shù)定義后,回歸問題情景,反思概念的“原型”解釋“切線的斜率”、“物體的瞬時速度”的本質(zhì).引導(dǎo)學(xué)生利用求瞬時速度的方法和思想類比探究,猜想得出函數(shù)在點處的變化率=,并對猜想的合理性進行分析后,引出定義1:(函數(shù)在一點處可導(dǎo)及其導(dǎo)數(shù))用具體到抽象,特殊到一般的思維方式,利用瞬時速度進行類比遷移,自然引出函數(shù)在一點處可導(dǎo)和導(dǎo)數(shù)的概念.由具體到抽象再回到具體的過程,感知上升到了理性,強化了對概念的理解. 類比探索 形成概念剖析概念 加深理解【探討1】 怎樣判斷函數(shù)在一點是否可導(dǎo)? 判斷函數(shù)在點處是否可導(dǎo) 轉(zhuǎn)化判斷極限 是否存在【探討2】導(dǎo)數(shù)是什么?描述角度本 質(zhì)文字語言瞬時變化率符號語言圖形語言(切線斜率)組織學(xué)生閱讀“導(dǎo)數(shù)”定義,抓住定義中的關(guān)鍵詞“可導(dǎo)”與“導(dǎo)數(shù)”交流探討,然后通過師生互動挖掘這些概念之間的深層含義.分析導(dǎo)數(shù)的本質(zhì)后,同時簡單提及導(dǎo)數(shù)產(chǎn)生的時代背景.引導(dǎo)學(xué)生以數(shù)學(xué)語言(文字語言、符號語言 、圖形語言)的理解、把握、運用為切入點去揭示概念的內(nèi)涵與外延,提高學(xué)生數(shù)學(xué)閱讀和自主學(xué)習(xí)的能力.讓學(xué)生感受數(shù)學(xué)文化的熏陶,了解導(dǎo)數(shù)的文化價值、科學(xué)價值和應(yīng)用價值.教學(xué)環(huán) 節(jié)內(nèi) 容師生活動設(shè)計意圖類比探索 形成概念【探討3】求導(dǎo)數(shù)的方法是什么?【例1】求函數(shù)y=x2在點處的導(dǎo)數(shù).讓學(xué)生類比瞬時速度的問題,根據(jù)導(dǎo)數(shù)定義歸納出求函數(shù)在點處導(dǎo)數(shù)的方法步驟:(1)求函數(shù)的增量;(2)求平均變化率; (3)取極限,得導(dǎo)數(shù).學(xué)生動手解答,老師強調(diào)符號語言的規(guī)范使用,對諸如忘寫括號的現(xiàn)象加以糾正.用定義法求導(dǎo)數(shù)是本課的重點之一.有了可導(dǎo)這個邏輯基礎(chǔ),導(dǎo)數(shù)成為可導(dǎo)的自然結(jié)果,求導(dǎo)數(shù)的方法則是對導(dǎo)數(shù)概念的理解與應(yīng)用.讓學(xué)生積極主動參與,進行有意義的建構(gòu),有利于重點知識的掌握.本題是教材上的一道例題.在學(xué)生建立起導(dǎo)數(shù)概念,明確用定義求導(dǎo)數(shù)的方法之后,進行強化訓(xùn)練, 滲透算法思想,加深對導(dǎo)數(shù)概念的理解,強化對重點知識的鞏固. 引申 拓展 發(fā)展概念利用例1繼續(xù)設(shè)問,函數(shù)在處可導(dǎo),那么,這些點也可導(dǎo)嗎?從而引申拓展出定義2:(函數(shù)在開區(qū)間內(nèi)可導(dǎo))【探討1】函數(shù)在開區(qū)間內(nèi)可導(dǎo),那么對于每一個確定的值,都有唯一確定的導(dǎo)數(shù)值與之相對應(yīng),這樣在開區(qū)間內(nèi)存在一個映射嗎?【探討2】存在的這個映射是否構(gòu)成一個新的函數(shù)呢?若能,新函數(shù)的定義域和對應(yīng)法則分別是什么呢? 師生互動,共同探討歸納函數(shù)在開區(qū)間的每一點可導(dǎo),每一點就有確定的唯一的導(dǎo)數(shù).這樣在開區(qū)間內(nèi)構(gòu)成一個特殊的映射,這里的映射是數(shù)集到數(shù)集的映射,就是函數(shù),我們把這個新函數(shù)叫做在開區(qū)間內(nèi)的導(dǎo)函數(shù)。它的定義域是通過層層展開的探討,激活學(xué)生知識思維的“最近發(fā)展區(qū)”,引導(dǎo)學(xué)生主動將新問題與原認知結(jié)構(gòu)中函數(shù)的相關(guān)知識相聯(lián)系,自然引入導(dǎo)函數(shù)概念,從而完成從函數(shù)在一點可導(dǎo)函數(shù)在開區(qū)間內(nèi)可導(dǎo)函數(shù)在開區(qū)間內(nèi)的導(dǎo)函數(shù)的兩次拓展.教學(xué)環(huán) 節(jié)內(nèi) 容師生活動設(shè)計意圖引申拓展 發(fā)展概念【探討3】怎樣求新函數(shù)的解析式?探討后引出定義3:(函數(shù)在開區(qū)間內(nèi)的導(dǎo)函數(shù))【例2】已知y=,求(1)y;(2)y|x=2.開區(qū)間,對應(yīng)法則是對開區(qū)間內(nèi)每一點求導(dǎo).運用函數(shù)思想,只要把求一點處的導(dǎo)數(shù)替換成,就可以求出導(dǎo)函數(shù)的解析式.分學(xué)習(xí)小組讓學(xué)生動腦思考,動手“操作”,相互交流。書面總結(jié)出兩小問的區(qū)別與聯(lián)系,選出代表作品用投影儀全班交流.完善后,屏幕顯示形成共識:【區(qū)別】(1)函數(shù)在點處的導(dǎo)數(shù),是在點處的變化率,是一個常數(shù);(2)函數(shù)的導(dǎo)數(shù)是對開區(qū)間內(nèi)任意點而言,是在開區(qū)間內(nèi)任意點的變化率,是一個函數(shù). 【聯(lián)系】一般而言,在處的導(dǎo)數(shù)就是導(dǎo)函數(shù)在=處的函數(shù)值,表示為,這也是求的一種方法.本例共兩個小問,第(1)小問是教材上的一道例題, 第(2)小問是補充題.兩問都是求導(dǎo)數(shù),但它們有本質(zhì)上的區(qū)別!學(xué)生容易產(chǎn)生混淆.通過此題讓學(xué)生辨清“函數(shù)在一點處的導(dǎo)數(shù)”、“函數(shù)在開區(qū)間內(nèi)的導(dǎo)數(shù)”與“導(dǎo)數(shù)”三者的關(guān)系.教學(xué)環(huán)節(jié)內(nèi) 容設(shè)計意圖練習(xí)反饋 鞏固概念練習(xí):1已知y=x32x+1,求y,y|x=2.2設(shè)函數(shù)f(x)在x0處可導(dǎo),則等于A. f(x0)B.0 C.2 f(x0) D.2 f(x0)3 已知一個物體運動的位移S(m)與時間t(s)滿足關(guān)系S(t)-2t2+5t(1)求物體第5秒和第6秒的瞬時速度;(2)求物體在t時刻的瞬時速度;(3)求物體t時刻運動的加速度,并判斷物體作什么運動?設(shè)計練習(xí)1,鞏固求導(dǎo)方法; 設(shè)計練習(xí)2,通過適當(dāng)?shù)淖兪接?xùn)練,揭示概念的內(nèi)涵,提高學(xué)生的模式識別的能力,培養(yǎng)學(xué)生思維的深刻性和靈活性;設(shè)計練習(xí)3,體驗實際應(yīng)用,展示概念的外延,讓學(xué)生認識到數(shù)學(xué)來源于生活并應(yīng)用于生活.通過練習(xí),反饋學(xué)生對知識技能的掌握情況,以便及時調(diào)節(jié)教學(xué),更好的達成教學(xué)目標(biāo).小結(jié)整理形成系統(tǒng) 知識層面 : 方法層面:用定義求導(dǎo)數(shù)的三個步驟思想層面:極限思想、函數(shù)思想、類比思想、轉(zhuǎn)化思想應(yīng)用層面:舉出生活中與導(dǎo)數(shù)有關(guān)的實例(涉及變化率問題的問題可以考慮用導(dǎo)數(shù)解決).引導(dǎo)學(xué)生從知識、方法、思想和應(yīng)用四個層面進行小結(jié),理清知識結(jié)構(gòu),提煉數(shù)學(xué)方法和領(lǐng)悟數(shù)學(xué)思想,培養(yǎng)應(yīng)用意識.分層作業(yè) 深化概念必做題:1.教材習(xí)題3.1 1、2、3、4、5 2.已知曲線C是函數(shù)的圖象(1)求點A(1,3)處的切線的斜率(2)求函數(shù)在x=1處的導(dǎo)數(shù)選做題: 1.有條件的同學(xué)上網(wǎng)查閱有關(guān)微積分產(chǎn)生的時代背景和歷史意義的資料并交流討論.彈性的分層作業(yè),照顧到各種層次的學(xué)生.補充的必做3,為下節(jié)課研究導(dǎo)數(shù)的幾何意義打下伏筆.可導(dǎo)與連續(xù)的關(guān)系,設(shè)計成選作題,既不影響主體知識建構(gòu),又能使學(xué)有余力的學(xué)生得到進一步的發(fā)展.利用網(wǎng)絡(luò),便于學(xué)生開展自主學(xué)習(xí),拓展學(xué)習(xí)方式和平臺.二、板書設(shè)計(板書附后)【設(shè)計意圖】本課使用了電腦投影屏幕,黑板上的板書保留勾勒本課知識發(fā)展的主要線索,呈現(xiàn)完整的知識結(jié)構(gòu)體系,用彩色粉筆突出重點,強化學(xué)生對新信息的納入,同時對新學(xué)的符號語言的規(guī)范使用進行示范.板書設(shè)計: 辨析: f (x0) 與 f (x) 課堂小結(jié)函數(shù)在開區(qū)間內(nèi)的導(dǎo)函數(shù)導(dǎo)數(shù) 定義1定義2定義3函數(shù)在點x可導(dǎo)及導(dǎo)數(shù)函數(shù)在開區(qū)間內(nèi)可導(dǎo)例1。電子屏幕例2.。課堂練習(xí)導(dǎo)數(shù)的概念(第三課時)布置作業(yè)三、【教學(xué)反思】一個概念的形成是螺旋式上升的,對新概念的抽象不僅是對結(jié)果的抽象,更是對方法和過程的抽象.本課設(shè)計上,把數(shù)學(xué)知識的“學(xué)術(shù)形態(tài)”轉(zhuǎn)化為數(shù)學(xué)課堂的“教學(xué)形態(tài)”,返璞歸真,從兩個反應(yīng)概念現(xiàn)實原型的具體問題出發(fā),引出函數(shù)在一點處的導(dǎo)數(shù)再到開區(qū)間內(nèi)的導(dǎo)函數(shù),引導(dǎo)學(xué)生經(jīng)歷了一個完整的數(shù)學(xué)概念發(fā)生、發(fā)展的探究過程.提出問題、觀察歸納、概括抽象,拓展概念讓學(xué)生充分經(jīng)歷了具體到抽象,特殊到一般,感性到理性,直觀到嚴謹?shù)闹R再發(fā)現(xiàn)過程,教師作為學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者創(chuàng)設(shè)機會和空間,激活學(xué)生思維的最近發(fā)展區(qū),倡導(dǎo)學(xué)生積極參與,自主探究,發(fā)現(xiàn)知識,培養(yǎng)能力.把可導(dǎo)與連續(xù)的關(guān)系,設(shè)計成彈性化的選作題,既不影響主體知識建構(gòu),又能使學(xué)有余力的學(xué)生得到進一步的發(fā)展.以上,體現(xiàn)了以學(xué)生的發(fā)展為本,不是教教材而是用教材教;教學(xué)中不是重結(jié)論,而是重過程和方法;不是采用接受式的學(xué)習(xí)方式,而是采用探究、交流的方式;不是統(tǒng)一要求,而是因材施教尊重個體差異.這樣的設(shè)計符合學(xué)生認知規(guī)律,促進了個性化學(xué)習(xí),更好地實現(xiàn)了教學(xué)目標(biāo).