歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類(lèi) > DOC文檔下載  

2019-2020年高三數(shù)學(xué) 4.3數(shù)系的擴(kuò)充(第一課時(shí))大綱人教版選修.doc

  • 資源ID:2532033       資源大小:41.50KB        全文頁(yè)數(shù):4頁(yè)
  • 資源格式: DOC        下載積分:9.9積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開(kāi)放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機(jī):
溫馨提示:
用戶(hù)名和密碼都是您填寫(xiě)的郵箱或者手機(jī)號(hào),方便查詢(xún)和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

2019-2020年高三數(shù)學(xué) 4.3數(shù)系的擴(kuò)充(第一課時(shí))大綱人教版選修.doc

2019-2020年高三數(shù)學(xué) 4.3數(shù)系的擴(kuò)充(第一課時(shí))大綱人教版選修從容說(shuō)課復(fù)數(shù)系的建立經(jīng)歷了一個(gè)漫長(zhǎng)的過(guò)程.事實(shí)上,在德國(guó)數(shù)學(xué)家高斯首次引進(jìn)“復(fù)數(shù)”這一名詞,并把這類(lèi)新數(shù)與坐標(biāo)平面(他稱(chēng)之為復(fù)平面,后人也稱(chēng)之為高斯平面)內(nèi)的點(diǎn)一一對(duì)應(yīng)起來(lái)之前,歐洲的數(shù)學(xué)家們已對(duì)“虛數(shù)”及其幾何意義進(jìn)行了將近三百年的研究.“虛數(shù)”產(chǎn)生于解方程需要的實(shí)際背景應(yīng)向?qū)W生交待,這是矛盾產(chǎn)生的結(jié)果,是數(shù)學(xué)內(nèi)部發(fā)展的自身需要,也是其他科學(xué)發(fā)展的需要,揭示了數(shù)形結(jié)合思想在推動(dòng)這一新的研究對(duì)象發(fā)生、形成和發(fā)展中所起的重要作用;同時(shí)要告訴學(xué)生,將一個(gè)數(shù)集進(jìn)行擴(kuò)張,還要解決原有的運(yùn)算律是否保持這樣一個(gè)基本問(wèn)題.通過(guò)前幾節(jié)的學(xué)習(xí),學(xué)生已經(jīng)知道在復(fù)數(shù)集內(nèi)如何進(jìn)行四則運(yùn)算,原有的加、乘運(yùn)算律仍然成立,并知道開(kāi)方運(yùn)算在復(fù)數(shù)集內(nèi)總可以實(shí)施.作為復(fù)數(shù)知識(shí)的重要應(yīng)用,應(yīng)引導(dǎo)學(xué)生運(yùn)用所學(xué)知識(shí)(共軛復(fù)數(shù)、加減法運(yùn)算)證明“虛根成對(duì)定理”和一元二次方程的根與原數(shù)關(guān)系的推廣真正的“韋達(dá)定理”,并向?qū)W生指明復(fù)數(shù)廣闊的應(yīng)用領(lǐng)域和發(fā)展前景,著重培養(yǎng)學(xué)生熱愛(ài)科學(xué)、追求科學(xué)、獻(xiàn)身科學(xué)的精神.第六課時(shí)課題4.3數(shù)系的擴(kuò)充教學(xué)目標(biāo)一、教學(xué)知識(shí)點(diǎn)1.復(fù)數(shù)集與實(shí)數(shù)集的關(guān)系,CRQZNN*.2.實(shí)系數(shù)一元二次方程的根的問(wèn)題及根與系數(shù)的關(guān)系.二、能力訓(xùn)練要求1.了解數(shù)系的建立發(fā)展的過(guò)程,學(xué)會(huì)尊重科學(xué).2.會(huì)運(yùn)用求根公式及根與系數(shù)的關(guān)系解決有關(guān)問(wèn)題.三、德育滲透目標(biāo)1.培養(yǎng)學(xué)生的探索與創(chuàng)新精神,學(xué)會(huì)尊重他人的辛勤勞動(dòng).2.培養(yǎng)學(xué)生的科學(xué)文化素養(yǎng),提高自身的素質(zhì)(包括數(shù)學(xué)素質(zhì)),懂得數(shù)學(xué)與文化的關(guān)系.教學(xué)重點(diǎn)在復(fù)數(shù)集中解一元二次方程.教學(xué)難點(diǎn)復(fù)系數(shù)一元二次方程根的探索.教學(xué)方法探索建構(gòu)法:在學(xué)生已經(jīng)掌握復(fù)數(shù)的運(yùn)算法則和實(shí)數(shù)一元二次方程的求解的基礎(chǔ)上,逐步讓學(xué)生主動(dòng)建構(gòu)出各數(shù)集之間的關(guān)系,探索出實(shí)系數(shù)一元二次方程在復(fù)數(shù)集中的求解公式、韋達(dá)定理,以及復(fù)系數(shù)一元二次方程的求解法.教學(xué)過(guò)程.復(fù)習(xí)導(dǎo)入師我們已經(jīng)學(xué)習(xí)了哪幾類(lèi)數(shù)?生正整數(shù)、零、負(fù)整數(shù)、分?jǐn)?shù)、無(wú)理數(shù)、虛數(shù)等等.師那么這些數(shù)集之間有什么關(guān)系呢?這些數(shù)又是在什么背景下產(chǎn)生的呢?這一節(jié)課我們來(lái)研究:數(shù)系的擴(kuò)充(板書(shū)課題).講授新課師數(shù)的概念是從實(shí)踐中產(chǎn)生和發(fā)展起來(lái)的,早在人類(lèi)社會(huì)初期,人們?cè)卺鳙C、采集果實(shí)等勞動(dòng)中由于計(jì)數(shù)的需要,就產(chǎn)生了1、2、3、4、5、6等數(shù)的概念以及表示“沒(méi)有”的數(shù)0.自然數(shù)的全體構(gòu)成自然數(shù)集N.在自然數(shù)集中,加法、乘法運(yùn)算總可以實(shí)施,它滿(mǎn)足哪些運(yùn)算律呢?生加法與乘法滿(mǎn)足交換律、結(jié)合律以及分配律.師你們知道分?jǐn)?shù)是怎樣引入的嗎?生為了解決測(cè)量、分配中遇到的將某些量進(jìn)行等分的問(wèn)題,人們引進(jìn)了分?jǐn)?shù).師無(wú)論是分?jǐn)?shù)的確切定義和科學(xué)表示,還是分?jǐn)?shù)的算法,最早建立起來(lái)的都是中國(guó),這是中國(guó)對(duì)世界數(shù)學(xué)的杰出貢獻(xiàn)之一.如在成書(shū)于公元1世紀(jì)的九章算術(shù)中,已經(jīng)有約分、通分及分?jǐn)?shù)的四則運(yùn)算等知識(shí).由此可見(jiàn),我們的民族在過(guò)去曾有過(guò)輝煌,我們深信將來(lái)會(huì)更輝煌.引進(jìn)了分?jǐn)?shù)之后,分份和度量等問(wèn)題以及兩個(gè)自然數(shù)相除(除數(shù)不為0)的問(wèn)題也就解決了,并且產(chǎn)生了小數(shù).為了表示各種具有相反意義的量以及滿(mǎn)足記數(shù)法的需要,人們又引進(jìn)了負(fù)數(shù).這樣就把數(shù)集擴(kuò)充到了有理數(shù)集Q,顯然,NQ.如果把自然數(shù)集(含正整數(shù)和0)與負(fù)整數(shù)集合并在一起,構(gòu)成整數(shù)集Z,則有ZQ.如果把整數(shù)看作分母為1的分?jǐn)?shù),那么有理數(shù)集實(shí)際上就是分?jǐn)?shù)集.生(站起來(lái)?yè)屵^(guò)話題)負(fù)數(shù)的引進(jìn)是中國(guó)古代數(shù)學(xué)家對(duì)數(shù)學(xué)的又一巨大貢獻(xiàn).師回答得很好!負(fù)數(shù)的概念引進(jìn)后,整數(shù)集和有理數(shù)集就完整地形成了.但又遇到了新的挑戰(zhàn),在測(cè)量中,有些問(wèn)題利用有理數(shù)的知識(shí)不能解決了,于是又要進(jìn)行一次“數(shù)”的革命.生這次革命中無(wú)理數(shù)誕生了.有些量與量的比值,例如用正方形的邊長(zhǎng)去度量它的對(duì)角線所得的結(jié)果,無(wú)法用有理數(shù)表示,為了解決這個(gè)矛盾,人們又引進(jìn)了無(wú)理數(shù).師什么叫無(wú)理數(shù)?生無(wú)理數(shù)就是無(wú)限不循環(huán)的小數(shù).師到這時(shí),數(shù)集擴(kuò)充到哪兒了?生有理數(shù)集與無(wú)理數(shù)集合并在一起,構(gòu)成實(shí)數(shù)集R.因?yàn)橛欣頂?shù)都可以看作循環(huán)小數(shù)(包括整數(shù)、有限小數(shù)),無(wú)理數(shù)都是無(wú)限不循環(huán)小數(shù),所以實(shí)數(shù)集實(shí)際上就是小數(shù)集.師實(shí)數(shù)解決了開(kāi)方開(kāi)不盡的矛盾,在實(shí)數(shù)集中,不僅滿(mǎn)足加法與乘法的運(yùn)算律,而且加法、減法、乘法、除法(除數(shù)不為0)、乘方運(yùn)算總可以實(shí)施.但是數(shù)集擴(kuò)充到實(shí)數(shù)集R以后,像方程x2=-1,x2+x+1=0還是無(wú)解的,因?yàn)闆](méi)有一個(gè)實(shí)數(shù)的平方等于-1.這樣,人們?cè)诮夥匠痰倪^(guò)程中,為了滿(mǎn)足負(fù)數(shù)開(kāi)方的需要,又?jǐn)U充到了復(fù)數(shù),解決了原來(lái)在實(shí)數(shù)集中開(kāi)方運(yùn)算不總可以實(shí)施的矛盾.請(qǐng)問(wèn)是怎樣引入的呢?生當(dāng)時(shí)數(shù)學(xué)家們規(guī)定i2=-1,(-i)2=i2=-1,得到i與-i是-1的平方根,即方程x2=-1的平方根為i和-i.在這個(gè)規(guī)定下,實(shí)系數(shù)一元二次方程或高次方程都可以求解了.這樣數(shù)i叫做虛數(shù)單位.師你們能求出x2=a的平方根嗎?(a為實(shí)數(shù))生甲可以.x=.生乙不對(duì).當(dāng)a0時(shí),x=;但當(dāng)a<0時(shí),例如a=-2,就無(wú)意義了,應(yīng)該是x=.于是有當(dāng)a0時(shí),x=;當(dāng)a<0時(shí),x=.師在復(fù)數(shù)集中,你們能求出x2+x+1=0的根嗎?生利用配方法求解.因?yàn)榉匠炭苫癁?而的平方根為,所以,即.生直接利用求根公式求解.先計(jì)算判別式=1-4=-3,而-3的平方根為,所以.師兩位同學(xué)的解法都很好!你們能把它推廣到一般的實(shí)系數(shù)一元二次方程ax2+bx+c=0(a0)的求解情況嗎?生可以,利用上述兩種方法都是可以的.當(dāng)=b2-4ac0時(shí),方程有兩個(gè)實(shí)根;當(dāng)b2-4ac<0時(shí),b2-4ac的平方根為,所以方程的兩個(gè)根為.如果用配方法求解是a(x2+ x)=-c,即a(x+)2=-c+,.當(dāng)b2-4ac0時(shí),;當(dāng)b2-4ac<0時(shí),它的平方根為.原方程在復(fù)數(shù)集C中,當(dāng)b2-4ac<0時(shí),有兩個(gè)虛根,即.師實(shí)系數(shù)一元二次方程的虛根是成對(duì)出現(xiàn)的,且互為共軛.如果是高次的一元方程a0xn+a1x n-1+an-1x+an=0,其中a00,a0,a1,a2,anR,它的虛根會(huì)不會(huì)也是成對(duì)出現(xiàn)的呢?生是的.根據(jù)我們的試驗(yàn)猜想應(yīng)該成立.例如,x4-3x2-4=0有兩個(gè)實(shí)根,也有兩個(gè)虛根.師這僅僅是一般情況,你能證明嗎?生利用共軛復(fù)數(shù)的性質(zhì)來(lái)證明.設(shè)z是方程的一個(gè)虛根,則有a0zn+a1z n-1+a2zn-2+an-1z+an=0.對(duì)該等式兩邊同時(shí)取共軛有a0zn+a1zn-1+a2zn-2+an-1z+an=0.+=0,即+an-1+an=0.(注:因?yàn)閍0,a1,a2,anR,故它們的共軛是實(shí)數(shù)) 是方程a0xn+a1x n-1+a n-1x+an=0的又一個(gè)虛根.方程a0xn+a1x n-1+an-1x+an=0的虛根是成對(duì)出現(xiàn)的.師證明過(guò)程很簡(jiǎn)捷,這就是一個(gè)代數(shù)基本定理.例題精講例1在復(fù)數(shù)集C中解下列方程:(1)x2-x+1=0;(2)x4+5x2+4=0.生第(1)題,利用求根公式:=1-4=-3.方程x2-x+1=0的兩個(gè)根分別為,.生第(2)題,利用因式分解得(x2+1)(x2+4)=0,x2=-1,x2=-4.由x2=-1得x1.2=i;由x2=-4得x3.4=2i,方程x2+5x+4=0的根為x1=i,x2=-i,x3=2i,x4=-2i.師第(2)題,先轉(zhuǎn)化為二次方程,然后再求解.學(xué)會(huì)轉(zhuǎn)化很重要.例2在復(fù)數(shù)集C中解方程x2-2ix+2=0.生這個(gè)方程不是實(shí)系數(shù)一元二次方法,但我們可以用配方法求解.x2-2ix+i2+3=0,即(x-i)2=-3.也就是(x-i)2=3i2,x-i=i,即x1=i+i,x2=i-i.故方程的解為x1=(1+)i,x2=(1-)i.生也可以直接利用求根公式求解.=(-2i)2-8=-12,而-12的平方根為2i,=(1)i.師本例題是復(fù)系數(shù)一元二次方程,兩位同學(xué)都能利用轉(zhuǎn)化思想求解,是很好的.課堂練習(xí)1.在復(fù)數(shù)集中解下列方程:(1)x2+2x+3=0;(2)2x2-4x+5=0.2.在復(fù)數(shù)集中解下列方程:(1)x2+ix-1=0;(2)x2-ix+1=0.師請(qǐng)四位同學(xué)板演.生甲1.(1)=4-12=-8,-8的平方根為2i.方程的解為x1.2=-1i,即原方程的解為x1=-1+i,x2=-1-i.生乙1.(2)=16-80=-64,原方程的兩根為24i.生丙2.(1)=i2+4=3,原方程的兩根為.生丁2.(2)=i2-4=-3,原方程的兩根為.課堂小結(jié)師本節(jié)課我們主要是研究數(shù)系的擴(kuò)充,從數(shù)的形成和發(fā)展來(lái)看,數(shù)的概念是隨著社會(huì)的進(jìn)步、生產(chǎn)和科技的發(fā)展,以及數(shù)學(xué)自身發(fā)展而形成和發(fā)展的,是人類(lèi)智慧的結(jié)晶,也是人類(lèi)戰(zhàn)勝自我、戰(zhàn)勝自然的產(chǎn)物.你們能給出復(fù)數(shù)的分類(lèi)表嗎?生.課后作業(yè)課本156習(xí)題4.31、2、3板書(shū)設(shè)計(jì)4.3數(shù)系的擴(kuò)充一、數(shù)的形成與發(fā)展N、Z、Q、R、C.二、一元二次方程ax2+bx+c=0(a0)0兩個(gè)實(shí)根;<0,.三、例題1.(1)x2-x+1=0;(2)x4+5x2+4=0.2.x2-2ix+2=0.四、練習(xí)1.(1)x2+2x+3=0;(2)2x2-4x+5=0.2.(1)x2+ix-1=0;(2)x2-ix+1=0.五、小結(jié):數(shù)系表.

注意事項(xiàng)

本文(2019-2020年高三數(shù)學(xué) 4.3數(shù)系的擴(kuò)充(第一課時(shí))大綱人教版選修.doc)為本站會(huì)員(tian****1990)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!