天然放射性元素化學(xué)
單擊此處編輯母版標(biāo)題樣式,單擊此處編輯母版文本樣式,第二級,第三級,第四級,第五級,*,Chapter4,Radionuclides,in nature,第四章 自然界中的放射性核素,楊金玲,Practically all natural materials contain radioactive nuclides, though usually in such low concentrations that they can be detected only by very sensitive analysis. This is true for water (rain water, rivers, lakes, sea), rocks and soil, and all living matter, as well as for structures on natural raw materials except where great care has resulted in use of anon-radioactive material. The,radionuclides,in our environment can be divided into (i) those formed from cosmic radiation, (ii) those with lifetimes comparable to the age of the earth, (iii) those that are part of the natural decay chains beginning with thorium and uranium, and (,iv)those,introduced in nature by modern techniques.,Sources can be categorized as: (i),cosmogenic,宇生放射性的, (ii) and (iii),primordial,原生放射性的, and (iv),anthropogenic,人類活動產(chǎn)生的,.,Cosmogenic,radionuclides,Cosmic irradiation of the atmosphere produces neutrons and protons which react with N,2, O,2,Ar, etc. resulting in the production of radioactive nuclides. These nuclides are produced at constant rates and brought to the earth surface by rain water. Equilibrium is assumed to be established between the production rate and the mean residence time of these,radionuclides,interrestrial,reservoirs (the atmosphere, the sea, lakes, soil, plants, etc) leading to constant specific,radioactivities,of the elements in each reservoir.,Cosmogenic,radionuclides,If a reservoir is closed from the environment, its specific radioactivity decreases. This can be used to determine exposure times of meteorites to cosmic radiation (and the constancy of the cosmic radiation field, using,81,Kr), dating marine sediments (using,10,Be,26,Al), groundwater (,36,Cl), glacial ice (,10,Be), dead biological materials (,14,C), etc. The shorter-lived,cosmogenic,radionuclides,have been used as natural tracers for atmospheric mixing and precipitation processes (e.g.,39,Cl or,38,S). Only T and,14,C are of sufficient importance to deserve further discussion.,Tritium,Satellite measurements have shown that the earth receives some of the tritium ejected from the sun. Much larger amounts are formed in the atmosphere through nuclear reactions; e.g., between fast neutrons and nitrogen atoms,The yield for this reaction is about 2 500 atoms tritium per second per square meter of the earth's surface; the global inventory is therefore about 1.3 × 10,18,Bq,. Tritium has a half-life of 12.33 y, decaying by weak ,-,emission to,3,He.,Tritium,It is rapidly incorporated in water, entering the global hydrological cycle. The average residence time in the atmosphere is about 2 y which is a small fraction of the half-life, as once the,tritiated,water reaches the lower troposphere, it rains out in 5 - 20 days. If we define 1 TU (Tritium Unit) as 1 tritium atom per 10,18,hydrogen atoms, 1 TU corresponds to 118 Bq/m,3,. Before the advent of nuclear energy, surface waters contained 2 - 8 TU (an average value of 3.5 TU is commonly used). The tritium content in water now commonly is of the order 20 - 40 TU. Rainwater contains between 4 and 25 TU, lower at the equatorial zone and increasing with latitude.,Tritium,Tritium is also a product in the nuclear energy cycle, some of which is released to the atmosphere and some to the hydrosphere. The emissions differ between reactor types (usually in the order HWR > PWR > BWR) and is a function of the energy production. Assuming the annual releases to be 40,TBq/GWe,(Giga Watt electricity) from an average power plant and 600,TBq/GWe,from a typical reprocessing plant, the annual global injection of tritium in the environment is estimated to 10,PBq,in 1992. Though this is a small fraction of the natural production, it causes local increases.,Tritium,The hydrogen bomb tests conducted in the atmosphere during the decade of the 1950's,andearly,1960's injected large amounts of tritium into the,geosphere,; 2.6 × 10,20,Bq,up to the end of the tests in 1962. This considerably exceeds the natural production inventory.,Before 1952 (first hydrogen bomb tests) the tritium content could be used to date water (i.e. determine when it became isolated from contact with the atmosphere). This was very useful e.g. for determining ice ages. However, due to the much larger content of anthropogenic tritium presently, this is no longer a useful technique for such dating.,Tritium in concentrations as low as 1 TU can be measured in low background proportional counters, and, after isotope enrichment (e.g. by electrolysis of alkaline water, by which tritium is enriched in the remainder), down to 0.01 TU. For very low concentrations mass spectrometry is preferred.,14-carbon,14,C is produced in the atmosphere by a variety of reactions, the most important being between,thermalized,neutrons from cosmic radiation and nitrogen atoms:,This reaction occurs with a yield of approximately 22 000 atoms,14,C formed per s and m,2,of the earth's surface; the global annual production rate is 1,PBq, and global inventory 8500,PBq,(corresponding to 75 tons). Of this amount 140,PBq,remain in the atmosphere while the rest is incorporated in terrestrial material. All living material (incl. body tissue) has a,14,C concentration of 227,Bq,/kg. The half-life of,14,C is 5715 y; it decays by soft ,-,emission(Emax,158,keV,).,14-carbon,14,C is also formed by reaction in nuclear tests. From these 220,PBq,is assumed to have been injected into the atmosphere up to 1990. This,14,C comes to equilibrium with other atmospheric carbon (CO,2,) in 12 years. Some,14,C, about 18,TBq/GWe,per year, is also released from nuclear power plants (mainly from HWR). The global atmospheric value is < 300,TBq/y,.,The combustion of fossil fuel adds CO,2, which is almost free of,14,C, to the atmosphere, thus reducing the specific activity (the dilution was about 3% for the period 1900 - 1970). Taking all anthropogenic sources into account, a global average specific activity of modern carbon is now 13.56 ± 0.07,dpm/g,C.,Primordial,radionuclides,1.Very long-lived nuclides lighter than lead,As the detection technique for radioactivity has been refined, a number of long-lived,radionuclides,have been discovered in nature. The lightest have been mentioned. The heavier ones, not belonging to the natural radioactive decay series of uranium and thorium, are listed in Table 5.2.,50,V is the nuclide of lowest elemental specific activity (0.0001,Bq/g,) while the highest are,87,Rb and,187,Re (each 900,Bq/g,). As our ability to make reliable measurements of low activities increases, the number of elements between potassium,K,and lead,Pb,with radioactive isotopes in nature can be expected to increase.,Primordial,radionuclides,由于這些核素的壽命特別長,他們肯定是在太陽系和地球形成時(甚至更早)形成的。當(dāng)?shù)貧す袒瘯r,這些核素夾雜在巖石中。隨著他們的衰變,衰變產(chǎn)物積聚在封閉的巖石環(huán)境中。通過測量母核和子核,根據(jù)其半衰期就可以計算出某個環(huán)境(例如:一塊巖石的形成)存在的時間。這是,核計年,nuclear dating,(也被稱為“,放射性時鐘,radioactive clock,”,)的基礎(chǔ),,5.2,中的核素幾乎都可以用于實(shí)現(xiàn)這個目的。,§5.8,中將討論,K-,Ar,和,Rb-Sr,計年系統(tǒng)。,仔細(xì)觀察這些天然長壽命核素的衰變,其中某些顯示出,短衰變系,short decay series,,例如:,152,Gd,148,Sm,144,Nd,140,Ce,和,190,Pt,186,Os,182,W,。以鈾和釷同位素為起始核的重元素衰變系稱為,長衰變系,long decay series,。,Primordial,radionuclides,2.Element in the,natural radioactive decay series,天然衰變系,天然放射性元素是指自然界中存在的放射性元素,它們是,84,Po,、,85,At,、,86,Rn,、,87,Fr,、,88,Ra,、,89,Ac,、,90,Th,、,91,Pa,和,92,U,等九個元素。他們主要來源于前面提到的三個衰變系。,Th,系,U,系,錒系,Primordial,radionuclides,thorium decay series,Th,系, consists of a group of,radionuclides,related through decay in which all the mass numbers are evenly divisible by four (the 4,n,series). It has its natural origin in,232,Th which occurs with 100% isotopic abundance. Natural thorium has a specific activity,S,of 4.06,MBq,/kg, as,itshalf,-life through -decay is 1.41 × 10,10,y. The terminal nuclide in this decay series is the stable species,208,Pb (also known as,ThD,). The transformation from the original parent to the final product requires 6 and 4 -decays. The longest-lived intermediate is 5.76 y,228,Ra.,Primordial,radionuclides,uranium decay series U,系,consist of a group of nuclides that, when their mass number is divided by 4, have a remainder of 2 (the 4,n,+ 2 series). The parent of this series is,238,U with a natural abundance of 99.3%; it undergoes -decay with a half-life of 4.46 × 10,9,y. The stable end product of the uranium series is,206,Pb, which is reached after 8 - and 6 -decay steps.,uranium decay series U,系,238,U,的比活度為,12.44MBq/kg,。盡管如此,由于天然鈾由三種同位素組成,,238,U,、,235,U,和,234,U,,同位素豐度分為,99.2745,,,0.7200,和,0.0055,,天然鈾的比活度為,25.4MBq/kg,。,鈾系供應(yīng)著元素鐳、氡和釙的最重要的同位素,它們可以從鈾礦處理過程中分離出來。每噸鈾含有,0.340g,226,Ra,,新分離出來的,226,Ra,與其衰變產(chǎn)物,210,Pb,約兩周實(shí)現(xiàn)放射性平衡。這些產(chǎn)物的多數(shù)核素都發(fā)射高能,射線,因此,Ra,用于醫(yī)治癌癥的,源(放射治療)。盡管如此,鐳的醫(yī)療作用因其他輻射源的引入而大大降低了,目前鐳的最大用途是用于小型中子源。,盡管鐳的化學(xué)相對簡單(類似鋇),但因鐳產(chǎn)生放射性氣體(氡)使它的處理變?yōu)閺?fù)雜。氡射氣衰變產(chǎn)生放射性的,At,、,Po,、,Bi,和,Pb,。鈾是巖石中的一個常見元素,也是建筑材料中的常見物質(zhì)。這些材料發(fā)射,Rn,。操作鐳化合物應(yīng)該在防護(hù)下進(jìn)行以避免氡及其子體的輻射。,Primordial,radionuclides,actinium decay series Ac,系, consists of a group of nuclides whose mass number divided by 4 leaves a remainder of 3 (the 4,n,+ 3 series). This series begins with the uranium isotope,235,U, which has a half-life of 7.04 × 10,8,y and a specific activity of 8 × 10,4,MBq,/kg. The stable end product of the series is,207,Pb, which is formed after 7 - and 4 -decays. The actinium series includes the most important isotopes of the elements,protactinium Pa,actinium Ac,francium Fr, and,astatine At,. Inasmuch as,235,U is a component of natural uranium, these elements can be isolated in the processing of uranium minerals. The longest-lived protactinium isotope,231,Pa (t,1/2,3.282× 10,4,y) has been isolated on the 100 g scale, and is the main isotope for the study of protactinium chemistry.,227,Ac (t,1/2,21.8 y) is the longest-lived actinium isotope.,釷系:以,232,Th,為起點(diǎn),經(jīng)過了,10,次轉(zhuǎn)化(,6,次,衰變,,4,次衰變,),終點(diǎn)為,208,Pd,;為,4n,系。,基本概念,鈾系:以,238,U,為起點(diǎn),經(jīng)過,14,次轉(zhuǎn)化(,8,次,衰變,,6,次衰變,)終點(diǎn)為,206,Pb,;為,4n,2,系。,錒鈾系:以,235,U,為起點(diǎn),經(jīng)過了,11,次轉(zhuǎn)化(,7,次,衰變,,4,次衰變,),終點(diǎn)為,207,Pd,;為,4n+3,系。,第四個衰變系,镎系,由一組質(zhì)量數(shù)被,4,除余,1,的核素組成(,4n+1,系)。該系名稱源于比,Bi,重的,A,4n+1,的最長壽命的核素,237,Np,,它是該系的母核,半衰期為,2.14×10,6,y,。由于該半衰期比地球的年齡小,原生的,237,Np,在地球上已經(jīng)不存在了,因此,镎系不是天然存在的。盡管如此,在一些星球的光譜中仍然發(fā)現(xiàn)了,Np,。,地球上已經(jīng)發(fā)現(xiàn)了極少量的,237,Np,和,239,Pu,;,239,Pu,(屬,4n+3,系)的半衰期為,2.411×10,4,y,。這兩個核素的壽命太短以至于它們在太陽系形成,4 eons,(,1eon,10,9,y,1billion years,)后已經(jīng)不復(fù)存在了。盡管如此,在含鈾和含釷礦物中仍然發(fā)現(xiàn)了它們,這些礦物中產(chǎn)生的中子可以認(rèn)為是,U,和,Th,發(fā)生(,,,n,)和(,,,n,)以及,238,U,發(fā)生自發(fā)裂變產(chǎn)生的,反應(yīng)的產(chǎn)物經(jīng),n,俘獲和,衰變形成了镎和钚。瀝青鈾礦(含,50,U,)中中子的生成率為,50n/kgs,。礦物中,239,Pu/,238,U,比的典型值為,3×10,-12,。,镎系的終止產(chǎn)物為,209,Bi,,它是鉍唯一穩(wěn)定的同位素。從,237,Np,到,209,Bi,經(jīng)過,7,次,衰變和,4,次,衰變。镎系中一個重要的核素是鈾的同位素,233,U,,半衰期為,1.59×10,5,y,(中間最穩(wěn)定的),類似,235,U,,熱中子可引發(fā)其裂變。,長壽命钚同位素,244,Pu,(屬于,4n,系),發(fā)生,衰變和自發(fā)裂變(,0.13,),總半衰期為,8.26×10,7,y,,,1971,年在稀土礦物中發(fā)現(xiàn)了它。如果這是原始,244,Pu,的殘存,那么只能剩余原始量的,10,-15,。一種猜測是這些,244,Pu,來自宇宙灰塵的沾污(例如:來自比太陽系形成晚的多的超新星)。,鈾化學(xué),鈾是發(fā)展原子能工業(yè)最基本的原料。鈾的原子序數(shù)為,92,,原子量為,238.03,。它是迄今為止發(fā)現(xiàn)的最重要的天然放射性元素。鈾是在,1789,年由克拉普羅特從瀝青鈾礦中發(fā)現(xiàn)的。開始命名為,Uranit,,這時因?yàn)?1781,年發(fā)現(xiàn)的一顆行星天王星被命名為,Uranus,之故。一年后將此元素正式命名為,Uranium,,化學(xué)符號,U,。,鈾是天然放射性元素之一。已知鈾有質(zhì)量數(shù)從,227,到,240,的,14,種同位素,其中三個是天然同位素,十一個是人工同位素。天然鈾的同位素組成為,238,U 99.274%,、,235,U 0.7204%,、,234,U 0.0054%,,半衰期分別為,238,U 4.51×10,9,年,,235,U 7.09×10,8,年,,234,U 2.47×10,5,年。所有的鈾同位素都是不穩(wěn)定的,衰變時放出,或,粒子。,鈾廣泛分布于地殼和環(huán)境水中,它在自然界中主要以四價和六價化合物狀態(tài)存在,形成,UO,2,和各種鈾酰鹽。鈾在地殼中的平均含量約為,0.0004%,。目前已知的含鈾礦物約有,200,多種,其中只有,20-30,多種均有開采價值。由于礦物中含有的鈾酰鹽易溶于水,在地下水的侵蝕下,鈾會從地表層進(jìn)入江、河、湖、海和土壤,因而也容易轉(zhuǎn)移到動植物體內(nèi)。鈾在海水中的含量約為,3-4,g/L,。,在大多數(shù)礦物中,鈾都是,4,價的。最重要的礦物是瀝青鈾礦(,UO,2+X,,,X,0.01,0.25,),在這種礦石中鈾占,50-90,;它主要分布在西歐、中非(如:加丹加省,(,扎伊爾沙巴區(qū),),,加蓬)、加拿大(例如:雪茄湖)、澳大利亞(例如:,Koongara,)。在美國和俄羅斯,釩鉀鈾礦(,aK+U,釩酸鹽)是最重要的礦石,它含,54,的鈾。高級別的礦石是鈾礦與其他礦物的混合物,所以在在壓碎的礦石中鈾的平均含量就低很多了:例如美國科羅拉多州高原的碎礦石中鈾含量,0.5,。鈾的豐度通常都很低,在,0.01-0.03,量級,和其他貴重礦物伴生,如磷灰石、頁巖、泥煤等。,鈾是一種很密實(shí)的金屬,剛磨光的金屬鈾表面具有發(fā)亮的銀白色,但在空氣中很快就會失去光澤。它的密度為,19.05×103 kg/m3,、熔點(diǎn)為,1132,、沸點(diǎn)為,3818,。鈾金屬具有三種異構(gòu)體,它們分別稱為,、,、,相鈾,金屬鈾是一種化學(xué)性質(zhì)十分活潑的元素,對氧具有強(qiáng)的親和力。它容易和大多數(shù)非金屬起反應(yīng);易和,Hg,、,Sn,、,Al,、,Fe,、,Be,等金屬形成合金。,金屬鈾易溶于硝酸,生成硝酸鈾酰,也能溶于濃鹽酸生成,UCl,4,;,與硫酸反應(yīng)緩慢,當(dāng)有,H,2,O,2,、,HClO,4,和,HNO,3,等氧化劑存在時,能與稀硫酸作用生成硫酸鈾酰。金屬鈾與堿不起作用,但能與含,H,2,O,2,或,Na,2,O,2,的堿性溶液作用,生成可溶性的過鈾酸鹽。,金屬鈾的性質(zhì),鈾的同位素:鈾共有,15,種放射性同位素和一種同質(zhì)異能素,其中,238,U,、,235,U,和,234,U,三種是天然存在的,其豐度分別為:,99.275%,,,0.720%,和,0.0054%,。人工放射性鈾同位素中最重要的是,233,U,。,提高鈾中,235,U,豐度的過程稱作鈾的濃縮;,235,U,產(chǎn)品稱作濃縮鈾。,表,1,天然鈾同位素和,233,U,的一些核特性,同位素,半衰期,,a,衰變方式,粒子主要能量,,MeV,(),比活度,,Bq.mg,-1,238,U,4.468,10,9,4.196(77),,,4.149(23),12.4,235,U,7.038,10,8,4.397(57),,,4.367(18),79.4,234,U,2.450,10,5,4.777(72.5),,,4.724(27.5),2.3,10,5,233,U,1.592,10,5,4.824(84.4),,,4.783(13.2),3.5,10,5,金屬鈾的性質(zhì),鈾的主要用途:,早期僅作為玻璃、陶瓷和琺瑯的著色劑。鈾的裂變發(fā)現(xiàn)之后,主要用于核工業(yè)的燃料元素。,鈾也可以作為鋼及其它金屬冶煉的配料,有機(jī)合成中的觸媒,橡膠工業(yè)中的防老劑和增硬劑等;,少量金屬鈾在電子管制造中可作為氫、氧等的除氣劑。,金屬鈾的性質(zhì):,金屬鈾主要是用金屬鈣或鎂熱還原鈾的鹵化物和氧化物來制備:,金屬鈾的性質(zhì),鈾的化合物,1.,鈾的價態(tài),鈾在化合物中可以正,、,、,、,四種價態(tài)存在。,三價的鈾離子能把水還原成氫,因此不可能制得穩(wěn)定的三價鈾水溶液。除某些四價鈾化合物能被氧化到六價外,一般的四價鈾化合物性質(zhì)與鋯和釷的四價化合物相似。五價鈾沒有太大的重要性,因?yàn)樗鼈兒苋菀灼缁癁樗膬r和六價鈾。六價的性質(zhì)類似于六價的鉬和鎢,在水溶液中六價鈾以鈾酰離子的形式存在。,鈾的化合物,2.,鈾的氧化物,鈾氧化物的物理性質(zhì),氧化物,顏色,熔點(diǎn),,密度,,g/cm,3,可用的制備方法,UO,2,棕色,2760,10.97,用,H,2,還原,UO,3,U,3,O,8,黑色,分解,8.38,氧化,UO,2,UO,3,桔色,分解,7.00,灼燒,UO,2,(NO,3,),2,UO,4,·2H,2,O,黃色,分解,4.66,溶液中沉淀,二氧化鈾,UO,2,呈棕黑色,可在還原劑存在下,煅燒分解鈾酰鹽或者高溫還原某些鈾氧化物來制備。在室溫下比較穩(wěn)定。但在空氣中加熱到,200,度以上被氧化成,U,3,O,8,:,UO,2,在室溫情況下可與,HCl,、,H,2,SO,4,和,HNO,3,緩慢作用。在熱,HNO,3,溶液中反應(yīng)加快,生成黃色的,UO,2,(NO,3,),2,溶液:,UO,2,不溶于水和堿,但在含有,H,2,O,2,的堿或者碳酸鹽溶液中迅速溶解,生成過鈾酸鹽,UO,2,可作為動力堆的燃料元件。,八氧化三鈾,U,3,O,8,可以通過灼燒多種鈾鹽或某些鈾氧化物來制備,其顏色隨制備條件的不同而呈現(xiàn)橄欖綠、墨綠或黑色等。,U,3,O,8,是鈾最穩(wěn)定的氧化物在,500°,以上的空氣中,唯有,U,3,O,8,才能穩(wěn)定存在,且組成固定,因而它可作為重量法測鈾的基準(zhǔn)化合物。,U,3,O,8,不溶于水和各種稀酸,但可與濃,HNO,3,作用生成,UO,2,(NO,3,),2,溶液,也能與濃,H,2,SO,4,或,HCl,作用,生成四價鈾鹽和鈾酰鹽的混合物:,其它鈾氧化合物,UO,3,為兩性鈾氧化合物,它與酸作用生成鈾酰鹽,與堿作用生成難溶性的鈾酸鹽如,Na,2,UO,4,或重鈾酸鹽如(,NH,4,),2,U,2,O,7,。因此,稱作鈾酸酐。,UO,3,在水中的溶解度很小,僅為,1.2,10,-8,g/mL,。但是它能與血漿中的,NaHCO,3,作用,生成可溶性的絡(luò)合物,Na,4,UO,2,(CO,3,),3,,從而增加在血漿中的溶解度:,過氧化鈾一般以,UO,4,·,2H,2,O,的形式存在,它是一種難溶于水的酸性氧化物。但它能溶于無機(jī)酸而轉(zhuǎn)化為鈾酰鹽:,UO,4,·2H,2,O,也能溶于堿性溶液,生成深黃色的過鈾酸鹽。這些性質(zhì)可用于鈾的分離。,鈾的化合物,3.,鈾的碳化物,下表列出了幾種鈾的碳化物,一碳化鈾(,UC,)與,UO,2,比較,具有較高的鈾密度、較高的熱導(dǎo)率和較高的中子慢化能力,它被認(rèn)為是用作改進(jìn)型快中子增殖堆的合適燃料。二碳化鈾(,UC,2,)是用作高溫氣冷堆的一種特殊燃料;而三碳化二鈾(,U,2,C,3,)由于穩(wěn)定存在的范圍較窄,因此沒有太大的實(shí)用性。,碳化物,UC,UC,2,U,2,C,3,熔點(diǎn),,2525,2350-2475,在,759-1850,時轉(zhuǎn)換為,UC+UC,2,沸點(diǎn),,4100-4370,熱導(dǎo)率,,W/,(,cm·,),0.188(119-236),0.343(50),理論密度(,25,),,G/cm,3,13.63,11.68,12.88,鈾的化合物,4.,鈾的氮化物,氮化鈾(,UN,)的理論密度為,14.32g/cm3,,熔點(diǎn)高達(dá),2630,左右。,UN,由于具有高的鈾原子密度、低的慢化能力和高的熔點(diǎn),因而可作為快中子堆的改進(jìn)型燃料。,UN,是通過加熱,UH,3,和一定比例的氮或氨來制造的。,UN,與潮濕的空氣或水之間的化學(xué)反應(yīng)很迅速。,鈾的化合物,5.,鈾的氫化物,氫化鈾(,UH,3,)是將金屬鈾和氫氣在高于,250,的溫度和高于在相應(yīng)溫度下氫的分壓( )的壓力下來制備的。氫的分壓可用下式來計算:,式中,T,為絕對溫度(,K,)。氫化物易自燃,加工時要特別小心。它可用來制取粉末狀金屬鈾。具體作法是:將塊狀金屬鈾與氫一起加熱生成氫化鈾,然后將易碎的氫化鈾壓碎,再在真空中加熱脫氫,即可得到粉末狀金屬鈾。,6.,鈾的鹵化物,鈾能與所用的鹵素元素作用生成從,3,+6,價的各種鈾鹵化物。重要的鈾鹵化物有,UF,4,和,UF,6,。,鈾鹵化物的性質(zhì)隨著鹵素原子序數(shù)和鈾化合價的增加有明顯的遞變關(guān)系:,鈾鹵化物與水作用的能力和揮發(fā)性等隨鈾化合價的增加而增加;,鈾鹵化物的吸潮性和在空氣中的氧化能力隨鹵素原子序數(shù)的增加而增加;,鈾鹵化物的穩(wěn)定性隨鹵素原子序數(shù)的增加而降低。,因此,在六價鈾鹵化物中,,,UF,6,最穩(wěn)定,,UCl,6,次之,,UBr,6,和,UI,6,都不能穩(wěn)定存在。,四氟化鈾:,在,U,4+,的酸性溶液中加入氫氟酸,即可得到,UF,4,的水合物。在高溫下,將,UO,2,與氫氟酸或者氟利昂、氟化銨等氟化劑作用,可制得無水,UF,4,:,UF,4,為綠色晶狀物質(zhì),俗稱“綠鹽”,green salt,,其化學(xué)性質(zhì)不活潑,與氧在,800°,時才發(fā)生反應(yīng):,6.,鈾的鹵化物,四氟化鈾:,green salt,UF,4,難溶于水和無機(jī)酸,在水中的溶解度僅為,110,-4,mol/L,(,25°,),但易溶于發(fā)煙高氯酸,也能因絡(luò)合作用而溶于草酸、草酸銨、碳酸銨以及含硼酸或鋁鹽的無機(jī)酸。,UF,4,還能與堿金屬過氧化物或過氧化氫的氨溶液劇烈反應(yīng)生成可溶性的過鈾酸鹽;與堿金屬或堿土金屬的氟化物反應(yīng)生成一系列復(fù)鹽(如,NaUF,5,等)。,UF,4,在沸水中易水解,其水解產(chǎn)物在空氣中可部分轉(zhuǎn)變?yōu)槟芤鸱沃卸镜?UO,2,F,2,:,6.,鈾的鹵化物,六氟化鈾:,UF,6,一般是在,300°,下用氟氣通過粉末狀的,UF,4,來制備:,UF,6,是一種白色晶體,易升華,常壓下其升華點(diǎn)為,56.5°,,此特性被用于其擴(kuò)散法富集,235,U,。,UF,6,在干燥的空氣中比較穩(wěn)定,一般不與氧或氮反應(yīng)。但它是一種強(qiáng)氟化劑和氧化劑。常溫下大多數(shù)金屬及其有機(jī)物均能被它腐蝕,而聚四氟乙烯、聚三氟氯乙烯等含氟塑料及其高鎳合金可耐,UF,6,的腐蝕。,UF,6,能與水或水蒸氣強(qiáng)烈作用產(chǎn)生極毒氣體,HF,,且腐蝕性很強(qiáng),能引起玻璃、石英等器皿的腐蝕。,UF,6,還能與堿金屬氟化物反應(yīng)生成復(fù)鹽(如,3NaF.UF,6,)。,鈾的水溶液化學(xué):,鈾在水溶液中的價態(tài)主要以,U,3+,、,U,4+,,,UO,2,+,和,UO,2,2+,四種價態(tài)離子存在。,最常見的價態(tài)是,U,4+,和,UO,2,2+,,而以,UO,2,2+,的穩(wěn)定性最高,,U,4+,僅能在酸性溶液中穩(wěn)定存在。,U,3+,和,UO,2,+,不穩(wěn)定。在酸性溶液中,,U,3+,和是一種還原性很強(qiáng)的離子,能將水溶液中的氫還原成氫氣:,而,UO,2+,在酸性溶液中能發(fā)生歧化反應(yīng),生成,U,4+,和,UO,2,2+,:,當(dāng)溶液,pH,值為,2-2.5,時,歧化反應(yīng)速率緩慢;酸度增加,溫度升高,歧化反應(yīng)速率加快。,各種價態(tài)的鈾離子都有特征的吸收光譜,其水溶液亦呈現(xiàn)不同的顏色,可以鑒別溶液中鈾的價態(tài)。,鈾的水溶液化學(xué),水溶液中不同價態(tài)鈾離子的形式和顏色,價態(tài),離子形式,溶液顏色,U,(,),U,3+,玫瑰紅,U,(,),U,4+,深綠,U,(,),UO,2,+,U,(,),UO,2,2+,黃綠,鈾離子的絡(luò)合物,無機(jī)絡(luò)合物,U,4+,和,UO,2,2+,能與許多無機(jī)酸根離子如,F,-,、,Cl,-,、,CO,3,2-,和,SO,4,2-,等形成無機(jī)絡(luò)合物。,U,4+,的絡(luò)合能力比,UO,2,2+,強(qiáng),但在鈾的分離等方面常用,UO,2,2+,所形成的絡(luò)合物,如與,Cl,-,、,C,2,O,4,2-,、,CO,3,2-,和,SO,4,2-,等形成的絡(luò)合物。鈾還能與硫氰酸鹽和亞鐵氰化鹽形成有色的絡(luò)合物,可用于鈾的分析。,UO,2,2+,能與銨、堿金屬的碳酸鹽或者碳酸氫鹽作用,能形成絡(luò)合穩(wěn)定常數(shù)大的絡(luò)陰離子,UO,2,(CO,3,),3,4-,:,此性質(zhì)在鈾的分離工藝和分析上,很重要。,有機(jī)絡(luò)合物,U,4+,和,UO,2,2+,能與酒石酸、檸檬酸和氨羧絡(luò)合劑等形成相當(dāng)穩(wěn)定且易溶于水的絡(luò)合物;也能與二酮類、有機(jī)酸類、,8-,羥基喹啉和偶氮類等形成有色的絡(luò)合物;與酯類(如乙酸乙酯)、醚類(如二乙醚)、酮類(如,TTA,)和含磷有機(jī)物(如,TBP,)等形成易溶于有機(jī)溶劑的絡(luò)合物;與一些不含親水性基團(tuán)的鰲合物如銅鐵試劑、,8-,羥基喹啉、,N-,苯基苯氧肟酸(,PBHA,)和,2-,亞硝基 萘酚等形成難溶性的中性絡(luò)合物沉淀。這些絡(luò)合物常常用于鈾的化學(xué)分離和測定。,鈾的水解行為,各種鈾離子的水解能力取決于離子的電荷,Z,與離子裸半徑,r,0,的比值,即離子勢,Z/r,0,。因此,,U,5+,和,U,6+,不可能在水溶液中存在,它們強(qiáng)烈水解形成,UO,2,+,和,UO,2,2+,。鈾離子水解能力如下:,由此可見,,U,4+,最易水解,當(dāng),pH,2,時,即發(fā)生一級水解反應(yīng):,隨著溶液,pH,值的升高,可進(jìn)一步發(fā)生水解,生成難溶于酸的聚合水解產(chǎn)物,U(OH),3,x,(x+4)+,和,U(OH),4,x,。,鈾的水解行為,UO,2,2+,在,pH,大于,3,時開始水解,其水解產(chǎn)物與溶液的,pH,值和鈾的濃度有關(guān)。鈾的濃度越高,,其水解反應(yīng)析出的氫氧化物沉淀時的,pH,值就愈低,。由于,U,3+,和,UO,2,+,不穩(wěn)定,所以對他們水解行為研究較少。,鈾在不同濃度下水解析出氫氧化物時的,pH,值(,HClO,4,介質(zhì)),C(UO,2,2+,),,,mol/L,10,-1,10,-2,10,-3,10,-4,3,10,-5,10,-5,析出沉淀時的,pH,值,4.47,5.27,5.90,6.62,6.80,7.22,鈾的鹽類,四價鈾鹽,大多數(shù)四價鈾鹽不溶于水;少數(shù)四價鈾鹽如,U(SO,4,),2,.xH,2,O,(,x,為,2,4,8,和,9,)和,UCl,4,能溶于酸性溶液,且較穩(wěn)定;四價鈾鹽在中性或弱堿性介質(zhì)中易水解,生成較難溶的,U(OH),4,膠體。,鈾酰鹽,鈾酰鹽是由,UO,2,2+,與酸根離子結(jié)合而成的,在紫外線照射下,能發(fā)出黃綠色熒光,其水溶液亦呈黃綠色。它們絕大多數(shù)是穩(wěn)定的,且易溶于水,只有少量如亞鐵氰化鈾酰,(UO,2,),2,Fe(CN),6,等難溶于水。,鈾酰鹽具有兩性性質(zhì),在酸性介質(zhì)中易,UO,2,2+,形式存在,而在,pH,大于,5,的介質(zhì)中,則以難溶性的重鈾酸鹽沉淀形式析出。此性質(zhì)常用來濃縮鈾或者從鈾的廢水中除去鈾:,所有的固體鈾酰鹽都受熱水解,當(dāng)溫度大于,700°,時轉(zhuǎn)變?yōu)?U,3,O,8,。常見的鈾酰鹽有,UO,2,(NO,3,),2,、,UO,2,SO,4,、,UO,2,(CH,3,COO),2,和,UO,2,C,2,O,4,等。,硝酸鈾酰,通常用金屬鈾、鈾氧化物或者某些難溶性鈾化合物等與硝酸作用即可生成含結(jié)晶水的,UO,2,(NO,3,),2,.xH,2,O,(,x,為,2,,,3,,,6,),其中常見的是在稀硝酸中生成黃綠色透明晶體,UO,2,(NO,3,),2,.6H,2,O,。,硝酸鈾酰易溶于水和許多有機(jī)試劑,其溶解度與硝酸或其它硝酸鹽的濃度有關(guān)。折椅性質(zhì)在鈾的溶劑萃取分離中具有很重要的意義。,無水硝酸鈾酰的制備很困難,當(dāng)溫度升高到,180,°,時,硝酸鈾酰會發(fā)生脫硝,生成,UO,3,:,硫酸鈾酰,通常用金屬鈾或鈾的氧化物與硫酸作用生成。常見的是可溶性的檸檬黃菱形晶體,UO,2,SO,4,.3H,2,O,,它在水中溶解度為,17.4g/g,,且隨水中硫酸濃度增加而減小。硫酸鈾酰具有較好的熱穩(wěn)定性,可作為均相反應(yīng)堆燃料。,重鈾酸鹽,是一種重要的難溶性的鈾鹽,可以通過鈾酰鹽與氨水或堿反應(yīng)制備:,主要的重鈾酸鹽有,(NH,4,),2,U,2,O,7,、,Na,2,U,2,O,7,和,K,2,U,2,O,7,等,其中,(NH,4,),2,U,2,O,7,俗稱,“,黃餅,”,yellow cake,。在鈾的水冶過程中,常被用來分離和濃縮鈾。重鈾酸鹽易溶于無機(jī)酸而重新轉(zhuǎn)變?yōu)殁欟{}:,重鈾酸鹽與碳酸銨作用生成可溶性的三碳酸鈾酰銨:,概述,1828,年,,J.J.,玻齊利厄斯(,Berzelius,)在礦物中首次發(fā)現(xiàn)了釷(,Thorium,)。,釷在自然界分布廣泛,在地殼中含量約為,0.0008%,,大致是鈾的兩倍。釷的礦物種類比鈾少,一般以難溶性的氧化物或硅酸鹽形式存在自然界中,因此,在江、河、湖、海和動植物中的含量比鈾低很多。釷的主要礦物是獨(dú)居石,其成分是釷和稀土的混合磷酸鹽。其次是,ThO,2,和,UO,2,共生的方釷石以及硅酸釷為主要成分的釷石。,釷的主要用途:,可轉(zhuǎn)移的核燃料核素,所以作為燃料元件;,光電管和氣體放電管的電極材料;金屬鹵化物燈燈的發(fā)光材料;,化學(xué)合成中的催化劑,電焊條和耐火材料中的添加劑;,合金材料的改性劑等等。,釷化學(xué),釷有,23,種同位素,其中只有,6,種是天然存在的。在天然釷中,最重要的是,232,Th,,其富集度約,100%,,比活度為,4.1Bq/mg,。,表,5,天然釷同位素的一些核特性,同位素,習(xí)用名稱,半衰期,衰變方式,粒子能量,,MeV,(),所屬放射系,227,Th,射錒(,RdAc,),18.718d,6.038(24.5),5.978(23.4),5.757(20.3),錒鈾系,228,Th,射釷(,RdTh,),1.913a,5.423(72.7),5.341(26.7),釷系,230,Th,鑀(,Io,),8.0,10,4,a,4.688(76.3),4.621(23.4),鈾系,231,Th,鈾,Y,(,UY,),25.52h,0.305(85),0.203(11),錒鈾系,232,Th,釷(,Th,),1.41,10,4,a,4.016(77),3.957(23),釷系,234,Th,鈾,X,1,(,UX,1,),24.1d,0.199(72.5),0.104(20.7),鈾系,金屬釷的性質(zhì):,金屬釷用金屬鈣熱還原釷的氧化物和氟化物或者電解,ThF,4,熔鹽來制備。,金屬釷是一種銀白色的延展性的金屬,相對密度,11.7,,熔點(diǎn)為,1780°,。,金屬釷與四價鋯、鉿相似,能與一系列金屬生成合金或金屬間化合物。常溫下,塊狀釷表面在空氣中會被氧化,形成灰白色的氧化物保護(hù)膜;溫度升高、氧化劑含量增加和表面粗糙,都能使其氧化速度加快,粉末狀的釷在空氣中可自燃。,金屬釷是一種還原劑,在加熱(大于,450°,)條件下能與氫、鹵素、硫、氮、碳和磷作用。常溫下下,不與水作用,但在,850°,的過熱水蒸汽作用下,生成釷的氧化物。,金屬釷溶于濃鹽酸和王水,與稀硝酸、硫酸和高氯酸等緩慢反應(yīng)。濃硝酸能使金屬釷表面鈍化,但溶液中含有少量的氟離子,鈍化膜可被破壞,使釷的溶解速度加快。溶液溫度和硝酸濃度越高,其溶解速度越快。金屬釷不與堿溶液反應(yīng)。,釷的水溶液化學(xué),釷在水溶液中一般是以無色四價離子形式存在。由于,Th,4+,具有較高的離子勢,所以它容易水解。通常情況下,當(dāng)溶液,pH,大于,3,時,,Th,4+,開始水解:,與此同時,還會發(fā)生如下聚合反應(yīng):,當(dāng)溶液的,pH,大于,3.5,時,則析出膠狀的,Th(OH),4,沉淀。隨著,pH,值和,Th,4+,濃度的增加,還能形成更為復(fù)雜的水解聚合物。,Th(OH),4,沉淀在酸中溶解性能與形成沉淀的條件和時間有關(guān),隨著時間的延長或?qū)⒊恋磉M(jìn)行烘干處理,,Th(OH),4,就難溶于酸。,釷的化合物,Th,的氧化物:通常情況下,,Th,只能形成穩(wěn)定的四價化合物。唯一穩(wěn)定的氧化物是,ThO,2,。它是一種化學(xué)性質(zhì)穩(wěn)定、難溶于水和具有很高熔點(diǎn)(,3050°,)的白色粉末,可制備成反應(yīng)堆的元件。由于,ThO,2,組成固定,且不易吸水,因此,,可以作為重量法測定,Th,的基準(zhǔn)物質(zhì),。,二碳化釷(,ThC,2,)與二碳化鈾的混合物或者是它們的固溶體可用作某些類型的高溫氣冷堆的燃料。碳化釷像碳化鈾一樣,很容易與水或潮濕,空氣反應(yīng),因而在它的貯存和加工過程中必須采取防潮措施。,ThC,2,的顆??捎昧畹难趸锱c一定比例的石墨粉混合,比較有實(shí)際意義的釷的鹵化物是,ThF,4,、,ThCl,4,和,ThI,4,。四氟化釷可用來制備金屬釷,它既可用于電解氯氟化物熔融體制備粉末狀金屬釷,也可用作鈣熱法生產(chǎn)金屬釷的原料。此外,在熔鹽反應(yīng)堆中,四氟化釷與堿金屬、鈹或鋯的氟化物熔融體是很好的增殖材料。,