(統(tǒng)考版)高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)14 導(dǎo)數(shù)(含解析)(文)-人教版高三數(shù)學(xué)試題
專題限時集訓(xùn)(十四)導(dǎo)數(shù)1(2019·全國卷)已知函數(shù)f(x)2sin xxcos xx,f(x)為f(x)的導(dǎo)數(shù)(1)證明:f(x)在區(qū)間(0,)存在唯一零點(diǎn);(2)若x0,時,f(x)ax,求a的取值范圍解(1)證明:設(shè)g(x)f(x),則g(x)cos xxsin x1,g(x)xcos x.當(dāng)x時,g(x)0;當(dāng)x時,g(x)0,所以g(x)在上單調(diào)遞增,在上單調(diào)遞減又g(0)0,g0,g()2,故g(x)在(0,)存在唯一零點(diǎn)所以f(x)在(0,)存在唯一零點(diǎn)(2)由題設(shè)知f()a,f()0,可得a0.由(1)知,f(x)在(0,)只有一個零點(diǎn),設(shè)為x0,且當(dāng)x(0,x0)時,f(x)0;當(dāng)x(x0,)時,f(x)0,所以f(x)在(0,x0)上單調(diào)遞增,在(x0,)上單調(diào)遞減又f(0)0,f()0,所以當(dāng)x0,時,f(x)0.又當(dāng)a0,x0,時,ax0,故f(x)ax.因此,a的取值范圍是(,02(2019·全國卷)已知函數(shù)f(x)2x3ax22.(1)討論f(x)的單調(diào)性;(2)當(dāng)0a3時,記f(x)在區(qū)間0,1的最大值為M,最小值為m,求Mm的取值范圍解(1)f(x)6x22ax2x(3xa)令f(x)0,得x0或x.若a0,則當(dāng)x(,0)時,f(x)0,當(dāng)x時,f(x)0,故f(x)在(,0),單調(diào)遞增,在單調(diào)遞減;若a0,f(x)在(,)單調(diào)遞增;若a0,則當(dāng)x(0,)時,f(x)0,當(dāng)x時,f(x)0,故f(x)在,(0,)單調(diào)遞增,在單調(diào)遞減(2)當(dāng)0a3時,由(1)知,f(x)在單調(diào)遞減,在單調(diào)遞增,所以f(x)在0,1的最小值為f2,最大值為f(0)2或f(1)4a.于是m2,M所以Mm當(dāng)0a2時,可知2a單調(diào)遞減,所以Mm的取值范圍是.當(dāng)2a3時,單調(diào)遞增,所以Mm的取值范圍是.綜上,Mm的取值范圍是.3(2018·全國卷)已知函數(shù)f(x)aexln x1.(1)設(shè)x2是f(x)的極值點(diǎn),求a,并求f(x)的單調(diào)區(qū)間;(2)證明:當(dāng)a時,f(x)0.解(1)f(x)的定義域?yàn)?0,),f(x)aex.由題設(shè)知,f(2)0,所以a.從而f(x)exln x1,f(x)ex.當(dāng)0<x<2時,f(x)<0;當(dāng)x>2時,f(x)>0.所以f(x)在(0,2)單調(diào)遞減,在(2,)單調(diào)遞增(2)證明:當(dāng)a時,f(x)ln x1.設(shè)g(x)ln x1,則g(x).當(dāng)0<x<1時,g(x)<0;當(dāng)x>1時,g(x)>0.所以x1是g(x)的最小值點(diǎn)故當(dāng)x>0時,g(x)g(1)0.因此,當(dāng)a時,f(x)0.4(2020·全國卷)已知函數(shù)f(x)x3kxk2.(1)討論f(x)的單調(diào)性;(2)若f(x)有三個零點(diǎn),求k的取值范圍解(1)f(x)3x2k.當(dāng)k0時,f(x)x3,故f(x)在(,)單調(diào)遞增當(dāng)k0時,f(x)3x2k0,故f(x)在(,)單調(diào)遞增當(dāng)k0時,令f(x)0,得x±.當(dāng)x時,f(x)0;當(dāng)x時,f(x)0;當(dāng)x時,f(x)0.故f(x)在,單調(diào)遞增,在單調(diào)遞減(2)由(1)知,當(dāng)k0時,f(x)在(,)單調(diào)遞增,f(x)不可能有三個零點(diǎn)當(dāng)k0時,x為f(x)的極大值點(diǎn),x為f(x)的極小值點(diǎn)此時,k1k1且f(k1)0,f(k1)0,f0.根據(jù)f(x)的單調(diào)性,當(dāng)且僅當(dāng)f0,即k20時,f(x)有三個零點(diǎn),解得k.因此k的取值范圍為.1(2020·長沙模擬)已知函數(shù)f(x)x4ln x.(1)求f(x)的單調(diào)區(qū)間;(2)判斷f(x)在(0,10上的零點(diǎn)的個數(shù),并說明理由(提示:ln 102.303)解(1)函數(shù)f(x)的定義域x|x>0,f(x)1.在區(qū)間(1,3)上,f(x)<0,f(x)單調(diào)遞減,在區(qū)間(0,1),(3,)上,f(x)>0,f(x)單調(diào)遞增,所以f(x)單調(diào)遞增區(qū)間(0,1),(3,);f(x)單調(diào)遞減區(qū)間(1,3)(2)由(1)知,f(1)134×02<0,f(3)314ln 324ln 3<0,f(10)104ln 104ln 109.74×2.303>0,所以函數(shù)f(x)在(0,10上的零點(diǎn)有一個2(2020·蕪湖模擬)已知函數(shù)f(x)aex2x,aR.(1)求函數(shù)f(x)的極值;(2)當(dāng)a1時,證明:f(x)ln x2x>2.解(1)f(x)aex2,當(dāng)a0時f(x)<0,f(x)在R上單調(diào)遞減,則f(x)無極值當(dāng)a>0時,令f(x)0得xln,f(x)>0得x>ln,f(x)<0得x<ln,f(x)在上單調(diào)遞減,上單調(diào)遞增,f(x)的極小值為f22ln ,無極大值綜上:當(dāng)a0時,f(x)無極值當(dāng)a>0時,f(x)的極小值為f22ln ,無極大值(2)當(dāng)a1時,f(x)ln x2xexln x,令g(x)exln x2,g(x)ex(x>0),令g(x)0得xx0,因?yàn)間(x)在(0,)為增函數(shù),所以函數(shù)g(x)在(0,x0)上單調(diào)遞減函數(shù),在(x0,)上單調(diào)遞增函數(shù),所以g(x)g(x0)ex0ln x02x02(x01)>0.即得證3(2020·鄭州一中適應(yīng)性檢測)已知函數(shù)f(x)x2(a1)xaln x.(1)討論函數(shù)f(x)的單調(diào)性;(2)對任意的a3,5,x1,x21,3(x1x2),恒有|f(x1)f(x2)|,求實(shí)數(shù)的取值范圍解(1)由題意知,函數(shù)f(x)的定義域?yàn)閤|x0,對f(x)求導(dǎo),得f(x)x(a1)(x0)當(dāng)a0時,函數(shù)f(x)的單調(diào)遞增區(qū)間為(1,),單調(diào)遞減區(qū)間為(0,1);當(dāng)0a1時,函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,a),(1,),單調(diào)遞減區(qū)間為(a,1);當(dāng)a1時,函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,1),(a,),單調(diào)遞減區(qū)間為(1,a);當(dāng)a1時,函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,),沒有單調(diào)遞減區(qū)間(2)不妨設(shè)1x1x23,則0.又3a5,由(1)知,函數(shù)f(x)在1,3上單調(diào)遞減,則f(x1)f(x2)0.所以f(x1)f(x2),即f(x1)f(x2).令g(x)f(x)(1x3),可知函數(shù)g(x)在1,3上單調(diào)遞增,則g(x)f(x)0,即x3(a1)x2ax(x2x)ax3x2對任意的a3,5,x1,3成立記h(a)(x2x)ax3x2,則x1,3時,h(a)x2x0,函數(shù)h(a)在3,5上單調(diào)遞增,所以h(a)h(5)x36x25x.記(x)x36x25x,則(x)3x212x5,注意到(1)40,(3)40,由二次函數(shù)性質(zhì)知在x1,3時,(x)0,即函數(shù)(x)在1,3上單調(diào)遞增,所以(x)(3)12,故的取值范圍為12,)4(2020·鄲城模擬)已知函數(shù)f(x)xln xx1,g(x)exax,aR.(1)求f(x)的最小值;(2)若g(x)1在R上恒成立,求a的值;(3)求證:lnlnln1.解(1)函數(shù)f(x)的定義域?yàn)?0,)f(x)ln x,當(dāng)0x1時,f(x)0,x1時,f(x)0,f(x)在(0,1)上單調(diào)遞減,在(1,)上單調(diào)遞增,當(dāng)x1時,f(x)取得最小值f(1)0.(2)由g(x)exax1恒成立可得ax1ex恒成立,設(shè)h(x)ex,則h(x)ex,故h(0)1,h(0)1,函數(shù)yh(x)在(0,1)處的切線方程為yx1,x1ex恒成立a1.(3)由(2)可知,x1ex恒成立,兩邊取對數(shù)得ln(x1)x,令x(i1,2,3n)累加得lnlnln 11.所以原不等式成立