(湖北專(zhuān)用)高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題限時(shí)集訓(xùn)(九)數(shù)列的概念與表示、等差數(shù)列與等比數(shù)列配套作業(yè) 文(解析版)
-
資源ID:239997055
資源大?。?span id="xcma7xy" class="font-tahoma">82.50KB
全文頁(yè)數(shù):7頁(yè)
- 資源格式: DOC
下載積分:10積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
(湖北專(zhuān)用)高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題限時(shí)集訓(xùn)(九)數(shù)列的概念與表示、等差數(shù)列與等比數(shù)列配套作業(yè) 文(解析版)
專(zhuān)題限時(shí)集訓(xùn)(九)第9講數(shù)列的概念與表示、等差數(shù)列與等比數(shù)列(時(shí)間:45分鐘) 1已知數(shù)列an滿(mǎn)足a13,an12an1,那么數(shù)列an1()A是等差數(shù)列B是等比數(shù)列C既是等差數(shù)列又是等比數(shù)列D既不是等差數(shù)列也不是等比數(shù)列2在等差數(shù)列an中,若a1a5a9,則tan(a4a6)()A. B. C1 D13公差不為零的等差數(shù)列an中,a1a2a513,且a1,a2,a5成等比數(shù)列,則數(shù)列an的公差等于()A1 B2 C3 D44在數(shù)列an中,若a12,且對(duì)任意的正整數(shù)p,q都有apqap·aq,則a8的值為()A256 B128 C64 D325已知各項(xiàng)均為正數(shù)的等比數(shù)列an中,a1a2a35,a7a8a910,則a4a5a6()A5 B7C6 D46在等差數(shù)列an中,已知公差d2,且a1,a3,a4成等比數(shù)列,則a2()A4 B6 C8 D107函數(shù)f(x)是R上的單調(diào)增函數(shù)且為奇函數(shù),數(shù)列an是等差數(shù)列,a30,則f(a1)f(a3)f(a5)的值()A恒為正數(shù) B恒為負(fù)數(shù)C恒為0 D可正可負(fù)8已知數(shù)列an中,a1,an1則a2 012等于()A. B.C. D.9已知遞增的等比數(shù)列an中,a2a83,a3·a72,則_10觀察下列等式11,2349,3456725,4567891049,照此規(guī)律,第n個(gè)等式為_(kāi)11若關(guān)于x的方程x2xa0與x2xb0的四個(gè)根組成首項(xiàng)為的等差數(shù)列,則ab_12定義一種運(yùn)算:(1at1at2a2a1a0)2tat1×2t1at2×2t2a1×2a0,其中ak0,1(k0,1,2,t1),給定x1(1at1at2a2a1a0),構(gòu)造無(wú)窮數(shù)列xk:x2(1a0at1at2a2a1),x3(1a1a0at1at2a3a2),x4(1a2a1a0at1at2a4a3),.(1)若x130,則x4_;(用數(shù)字作答)(2)若x122m322m22m11(mN*),則滿(mǎn)足xkx1(k2,kN*)的k的最小值為_(kāi)(用含m的式子作答)13在數(shù)列an中,a1,點(diǎn)(an,an1)在直線yx上(1)求數(shù)列an的通項(xiàng)公式;(2)記bn,求數(shù)列bn的前n項(xiàng)和Tn.14已知數(shù)列an中,a12,anan12n0(n2,nN*)(1)寫(xiě)出a2,a3的值(只寫(xiě)結(jié)果),并求出數(shù)列an的通項(xiàng)公式;(2)設(shè)bn,求bn的最大值15已知數(shù)列an滿(mǎn)足:a1a2a3annan(n1,2,3,),(1)求證:數(shù)列an1是等比數(shù)列;(2)令bn(2n)(an1)(n1,2,3,),如果對(duì)任意nN*,都有bntt2,求實(shí)數(shù)t的取值范圍專(zhuān)題限時(shí)集訓(xùn)(九)【基礎(chǔ)演練】1B解析 由an12an1得an112(an1),而a1120,所以2.故選B.2A解析 由等差數(shù)列的性質(zhì)可知,a1a5a93a5,a4a62a5,所以a4a6(a1a5a9)×,所以tan(a4a6)tan.故選A.3B解析 設(shè)數(shù)列an的公差為d.因?yàn)閍1,a2,a5成等比數(shù)列,所以aa1a5,則(a1d)2a1(a14d),得a1.又a1a2a53a15d13,由解得d2.故選B.4A解析 由apqap·aq,令pn,q1,則an1an·a1,即2,所以an是以2為公比的等比數(shù)列,首項(xiàng)為2,故a82×2728256.【提升訓(xùn)練】5A解析 由等比數(shù)列的性質(zhì)可知,a1a2a3,a4a5a6,a7a8a9也成等比數(shù)列,又等比數(shù)列an中各項(xiàng)均為正數(shù),所以a4a5a65.6B解析 由題意,aa1a4,則(a2d)2(a2d)(a22d),即(a22)2(a22)(a24),解得a26.故選B.7A解析 f(0)0,a30,f(a3)f(0)0,又a1a52a30,所以a1a5即f(a1)f(a5),于是f(a1)f(a5)0.8C解析 當(dāng)a1時(shí),a22×1,a32×1,a42×,a52×.所以數(shù)列an的周期為4,而503,所以a2 012a4.故選C.9.解析 設(shè)等比數(shù)列an的公比為q,則由條件a3·a7a2·a82,又a2a83,且an是遞增數(shù)列,知a2<a8且q>0,解得a21,a82,所以q62,故q3.10n(n1)(n2)(3n2)(2n1)2解析 依題意,等式的第一項(xiàng)依次為1,2,3,由此知等式的第n項(xiàng)為n;最后一項(xiàng)為1,4,7,10,由此知最后一項(xiàng)為3n2.于是,第n個(gè)等式為n(n1)(n2)(3n2)(2n1)2.故填n(n1)(n2)(3n2)(2n1)2.11.解析 設(shè)兩個(gè)方程的根分別為x1、x4和x2、x3.因?yàn)閤1x4x2x31,所以x1,x4,從而x2,x3.則ax1x4,bx2x3,或a,b.于是ab.12(1)29(2)2m4解析 (1)因?yàn)閤12tat12t1at22t2a1×2a030,又因?yàn)?41×231×221×2030,所以一定有t4,a31,a21,a11,a00.因此,x424a223a122a02a3161×231×220×2129.(2)x1(110000,sdo4(m個(gè)0)10000,sdo4(m個(gè)0)1)x2(1110000,sdo4(m個(gè)0)10000,sdo4(m個(gè)0)xm2(10000,sdo4(m個(gè)0)110000,sdo4(m個(gè)0)1)xm3(110000,sdo4(m個(gè)0)110000,sdo4(m個(gè)0)x2m3(10000,sdo4(m個(gè)0)10000,sdo4(m個(gè)0)11)x2m4(110000,sdo4(m個(gè)0)10000,sdo4(m個(gè)0)1)x1,所以滿(mǎn)足xkx1的k的最小值為2m4.13解:(1)由已知得an1an,即an1an.所以數(shù)列an是以為首項(xiàng),為公差的等差數(shù)列,即an(n1).(2)由(1)得bn,即bn4,所以Tn441.14解:(1)因?yàn)閍12,anan12n0(n2,nN*),所以a26,a312.當(dāng)n2時(shí),anan12n,an1an22(n1),a3a22×3,a2a12×2,所以ana12n(n1)32,即an2n(n1)3212·n(n1)當(dāng)n1時(shí),a11×(11)2也滿(mǎn)足上式于是數(shù)列an的通項(xiàng)公式為ann(n1)(2)bn.令f(x)2x(x1),則f(x)2,當(dāng)x1時(shí),f(x)>0恒成立,所以f(x)在1,)上是增函數(shù),故當(dāng)x1時(shí),f(x)minf(1)3,即當(dāng)n1時(shí),(bn)max.15解:(1)證明:由題可知:a1a2a3an1annan,a1a2a3anan1n1an1,可得2an1an1,即an11(an1),又a11,所以數(shù)列an1是以為首項(xiàng),為公比的等比數(shù)列(2)由(1)可得,an1,bn,由bn1bn>0可得n<3,由bn1bn<0可得n>3,所以b1<b2<b3b4>b5>>bn>,故bn有最大值b3b4,所以,對(duì)任意nN*,有bn,如果對(duì)任意nN*,都有bntt2,即bnt2t成立,則(bn)maxt2t,故有t2t,解得t或t,所以,實(shí)數(shù)t的取值范圍是.