歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題4 立體幾何 突破點(diǎn)10 空間幾何體表面積或體積的求解教師用書 理-人教版高三數(shù)學(xué)試題

  • 資源ID:238157312       資源大?。?span id="nlx0e8c" class="font-tahoma">1.13MB        全文頁(yè)數(shù):22頁(yè)
  • 資源格式: DOC        下載積分:20積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要20積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題4 立體幾何 突破點(diǎn)10 空間幾何體表面積或體積的求解教師用書 理-人教版高三數(shù)學(xué)試題

專題四立體幾何建知識(shí)網(wǎng)絡(luò)明內(nèi)在聯(lián)系高考點(diǎn)撥立體幾何專題是高考中當(dāng)仁不讓的熱點(diǎn)之一,常以“一小一大”呈現(xiàn),小題主要考查三視圖與空間幾何體的體積和空間位置關(guān)系及空間角,一大題??伎臻g位置關(guān)系的證明與空間角、距離的探求本專題主要從“空間幾何體表面積或體積的求解”“空間中的平行與垂直關(guān)系”“立體幾何中的向量方法”三大角度進(jìn)行典例剖析,引領(lǐng)考生明確考情并提升解題技能突破點(diǎn)10空間幾何體表面積或體積的求解(對(duì)應(yīng)學(xué)生用書第167頁(yè))提煉1求解幾何體的表面積或體積(1)對(duì)于規(guī)則幾何體,可直接利用公式計(jì)算(2)對(duì)于不規(guī)則幾何體,可采用割補(bǔ)法求解;對(duì)于某些三棱錐,有時(shí)可采用等體積轉(zhuǎn)換法求解(3)求解旋轉(zhuǎn)體的表面積和體積時(shí),注意圓柱的軸截面是矩形,圓錐的軸截面是等腰三角形,圓臺(tái)的軸截面是等腰梯形的應(yīng)用.提煉2球與幾何體的外接與內(nèi)切(1)正四面體與球:設(shè)正四面體的棱長(zhǎng)為a ,由正四面體本身的對(duì)稱性,可知其內(nèi)切球和外接球的球心相同,則內(nèi)切球的半徑ra,外接球的半徑Ra.(2)正方體與球:設(shè)正方體ABCD­A1B1C1D1的棱長(zhǎng)為a,O為其對(duì)稱中心,E,F(xiàn),H,G分別為AD,BC,B1C1,A1D1的中點(diǎn),J為HF的中點(diǎn),如圖10­1所示圖10­1正方體的內(nèi)切球:截面圖為正方形EFHG的內(nèi)切圓,故其內(nèi)切球的半徑為OJ;正方體的棱切球:截面圖為正方形EFHG的外接圓,故其棱切球的半徑為OG;正方體的外接球:截面圖為矩形ACC1A1的外接圓,故其外接球的半徑為OA1.回訪1幾何體的表面積或體積1(2016·山東高考)一個(gè)由半球和四棱錐組成的幾何體,其三視圖如圖10­2所示,則該幾何體的體積為()圖10­2A.B.C.D1C由三視圖知,該四棱錐是底面邊長(zhǎng)為1,高為1的正四棱錐,結(jié)合三視圖可得半球半徑為,從而該幾何體的體積為×12×1××3.故選C.2(2015·山東高考)在梯形ABCD中,ABC,ADBC,BC2AD2AB2.將梯形ABCD繞AD所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為()A.B.C.D2C過(guò)點(diǎn)C作CE垂直AD所在直線于點(diǎn)E,梯形ABCD繞AD所在直線旋轉(zhuǎn)一周而形成的旋轉(zhuǎn)體是由以線段AB的長(zhǎng)為底面圓半徑,線段BC為母線的圓柱挖去以線段CE的長(zhǎng)為底面圓半徑,ED為高的圓錐,如圖所示,該幾何體的體積為VV圓柱V圓錐·AB2·BC··CE2·DE×12×2×12×1,選C.3(2014·山東高考)一個(gè)六棱錐的體積為2,其底面是邊長(zhǎng)為2的正六邊形,側(cè)棱長(zhǎng)都相等,則該六棱錐的側(cè)面積為_12設(shè)正六棱錐的高為h,側(cè)面的斜高為h.由題意,得×6××2××h2,h1,斜高h(yuǎn)2,S側(cè)6××2×212.回訪2球與幾何體的外接與內(nèi)切4(2015·全國(guó)卷)已知A,B是球O的球面上兩點(diǎn),AOB90°,C為該球面上的動(dòng)點(diǎn)若三棱錐O­ABC體積的最大值為36,則球O的表面積為()A36B64C144D256C如圖,設(shè)球的半徑為R,AOB90°,SAOBR2.VO­ABCVC­AOB,而AOB面積為定值,當(dāng)點(diǎn)C到平面AOB的距離最大時(shí),VO­ABC最大,當(dāng)C為與球的大圓面AOB垂直的直徑的端點(diǎn)時(shí),體積VO­ABC最大為×R2×R36,R6,球O的表面積為4R24×62144.故選C.5(2013·全國(guó)卷)如圖10­3,有一個(gè)水平放置的透明無(wú)蓋的正方體容器,容器高8 cm,將一個(gè)球放在容器口,再向容器內(nèi)注水,當(dāng)球面恰好接觸水面時(shí)測(cè)得水深為6 cm,如果不計(jì)容器厚度,則球的體積為()圖10­3A. cm3B. cm3C. cm3D. cm3A如圖,作出球的一個(gè)截面,則MC862(cm),BMAB×84(cm)設(shè)球的半徑為R cm,則R2OM2MB2(R2)242,R5,V球×53(cm3)6(2012·全國(guó)卷)已知三棱錐S­ABC的所有頂點(diǎn)都在球O的球面上,ABC是邊長(zhǎng)為1的正三角形,SC為球O的直徑,且SC2,則此棱錐的體積為()A.B.C.D.A由于三棱錐S­ABC與三棱錐O­ABC底面都是ABC,O是SC的中點(diǎn),因此三棱錐S­ABC的高是三棱錐O­ABC高的2倍,所以三棱錐S­ABC的體積也是三棱錐O­ABC體積的2倍在三棱錐O­ABC中,其棱長(zhǎng)都是1,如圖所示,SABC×AB2,高OD,VS­ABC2VO­ABC2×××.(對(duì)應(yīng)學(xué)生用書第167頁(yè))熱點(diǎn)題型1幾何體的表面積或體積題型分析:解決此類題目,準(zhǔn)確轉(zhuǎn)化是前提,套用公式是關(guān)鍵,求解時(shí)先根據(jù)條件確定幾何體的形狀,再套用公式求解.(1)(2016·全國(guó)乙卷)如圖10­4,某幾何體的三視圖是三個(gè)半徑相等的圓及每個(gè)圓中兩條互相垂直的半徑若該幾何體的體積是,則它的表面積是()圖10­4A17B18C20D28(2)(2016·全國(guó)丙卷)如圖10­5,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的表面積為()圖10­5A1836B5418C90D81(1)A(2)B(1)由幾何體的三視圖可知,該幾何體是一個(gè)球體去掉上半球的,得到的幾何體如圖設(shè)球的半徑為R,則R3×R3,解得R2.因此它的表面積為×4R2R217.故選A.(2)由三視圖可知該幾何體是底面為正方形的斜四棱柱,其中有兩個(gè)側(cè)面為矩形,另兩個(gè)側(cè)面為平行四邊形,則表面積為(3×33×63×3)×25418.故選B.1求解幾何體的表面積及體積的技巧(1)求幾何體的表面積及體積問(wèn)題,可以多角度、多方位地考慮,熟記公式是關(guān)鍵所在求三棱錐的體積,等體積轉(zhuǎn)化是常用的方法,轉(zhuǎn)化原則是其高易求,底面放在已知幾何體的某一面上(2)求不規(guī)則幾何體的體積,常用分割或補(bǔ)形的思想,將不規(guī)則幾何體轉(zhuǎn)化為規(guī)則幾何體以易于求解2根據(jù)幾何體的三視圖求其表面積與體積的三個(gè)步驟(1)根據(jù)給出的三視圖判斷該幾何體的形狀(2)由三視圖中的大小標(biāo)示確定該幾何體的各個(gè)度量(3)套用相應(yīng)的面積公式與體積公式計(jì)算求解變式訓(xùn)練1(1)(2016·平頂山二模)某幾何體的三視圖如圖10­6所示,則該幾何體的體積為()A.B5C5D.圖10­6(2)(2016·膠東示范校二模)一個(gè)茶葉盒的三視圖如圖10­7所示(單位:分米),盒蓋與盒底為合金材料制成,其余部分為鐵皮材料制成如果合金材料每平方分米造價(jià)10元,鐵皮材料每平方分米造價(jià)5元,則該茶葉盒的造價(jià)為()圖10­7A100元B120元C130元D200元(3)(名師押題)如圖10­8,從棱長(zhǎng)為6 cm的正方體鐵皮箱ABCD ­A1B1C1D1中分離出來(lái)由三個(gè)正方形面板組成的幾何圖形如果用圖示中這樣一個(gè)裝置來(lái)盛水,那么最多能盛的水的體積為_cm3.圖10­8(1)D(2)C(3)36(1)由三視圖知該幾何體是由一個(gè)長(zhǎng)方體,一個(gè)三棱錐和一個(gè)圓柱組成,故該幾何體的體積為V2×1×2××1×1×2××12×2.(2)該茶葉盒是一個(gè)棱長(zhǎng)為2的正方體截去了四個(gè)三棱錐,其直觀圖如圖所示,以下底面正方形的邊為底的四個(gè)等腰三角形的面積之和是4××2×28,以上底面正方形的邊為底的四個(gè)等腰三角形的面積之和是4×××6.又下底面的面積為4,上底面的面積為2,所以該茶葉盒的造價(jià)為5×1410×6130(元)(3)最多能盛多少水,實(shí)際上是求三棱錐C1­CD1B1的體積又V三棱錐C1­CD1B1V三棱錐C­B1C1D1××636(cm3),所以用圖示中這樣一個(gè)裝置來(lái)盛水,最多能盛36 cm3體積的水熱點(diǎn)題型2球與幾何體的切、接問(wèn)題題型分析:與球有關(guān)的表面積或體積求解,其核心本質(zhì)是半徑的求解,這也是此類問(wèn)題求解的主線,考生要時(shí)刻謹(jǐn)記.先根據(jù)幾何體的三視圖確定其結(jié)構(gòu)特征與數(shù)量特征,然后確定其外接球的球心,進(jìn)而確定球的半徑,最后代入公式求值即可;也可利用球的性質(zhì)球面上任意一點(diǎn)對(duì)直徑所張的角為直角,然后根據(jù)幾何體的結(jié)構(gòu)特征構(gòu)造射影定理求解.(1)(2016·南昌二模)一個(gè)幾何體的三視圖如圖10­9所示,其中正視圖是正三角形,則該幾何體的外接球的表面積為()圖10­9A.B.C.D.(2)(2016·全國(guó)丙卷)在封閉的直三棱柱ABC­A1B1C1內(nèi)有一個(gè)體積為V的球若ABBC,AB6,BC8,AA13,則V的最大值是()A4B.C6D.(1)D(2)B(1)法一由三視圖可知,該幾何體是如圖所示的三棱錐S ­ ABC,其中HS是三棱錐的高,由三視圖可知HS2,HAHBHC2,故H為ABC外接圓的圓心,該圓的半徑為2.由幾何體的對(duì)稱性可知三棱錐S­ABC外接球的球心O在直線HS上,連接OB.設(shè)球的半徑為R,則球心O到ABC外接圓的距離為OH|SHOS|2R|,由球的截面性質(zhì)可得ROB,解得R,所以所求外接球的表面積為4R24×.故選D.法二由三視圖可知,該幾何體是如圖所示的三棱錐S ­ABC,其中HS是三棱錐的高,由側(cè)視圖可知HS2,由正視圖和側(cè)視圖可得HAHBHC2.由幾何體的對(duì)稱性可知三棱錐外接球的球心O在HS上,延長(zhǎng)SH交球面于點(diǎn)P,則SP就是球的直徑,由點(diǎn)A在球面上可得SAAP.又SH平面ABC,所以SHAH.在RtASH中,SA4.設(shè)球的半徑為R,則SP2R,在RtSPA中,由射影定理可得SA2SH×SP,即422×2R,解得R,所以所求外接球的表面積為4R24×.故選D.(2)由題意得要使球的體積最大,則球與直三棱柱的若干面相切設(shè)球的半徑為R.因?yàn)锳BC的內(nèi)切圓半徑為2,所以R2.又2R3,所以R,所以Vmax3.故選B.解決球與幾何體的切、接問(wèn)題的關(guān)鍵在于確定球的半徑與幾何體的度量之間的關(guān)系,這就需要靈活利用球的截面性質(zhì)以及組合體的截面特征來(lái)確定對(duì)于旋轉(zhuǎn)體與球的組合體,主要利用它們的軸截面性質(zhì)建立相關(guān)數(shù)據(jù)之間的關(guān)系;而對(duì)于多面體,應(yīng)抓住多面體的結(jié)構(gòu)特征靈活選擇過(guò)球心的截面,把多面體的相關(guān)數(shù)據(jù)和球的半徑在截面圖形中體現(xiàn)出來(lái)變式訓(xùn)練2(1)已知直三棱柱ABC­A1B1C1的6個(gè)頂點(diǎn)都在球O 的球面上,若AB3,AC1,BAC60°,AA12,則該三棱柱的外接球的體積為() 【導(dǎo)學(xué)號(hào):67722037】A.B.C.D20(2)(名師押題)一幾何體的三視圖如圖10­10(網(wǎng)格中每個(gè)正方形的邊長(zhǎng)為1),若這個(gè)幾何體的頂點(diǎn)都在球O的表面上,則球O的表面積是_圖10­10(1)B(2)20(1)設(shè)A1B1C1的外心為O1,ABC的外心為O2,連接O1O2,O2B,OB,如圖所示由題意可得外接球的球心O為O1O2的中點(diǎn)在ABC中,由余弦定理可得BC2AB2AC22AB×ACcosBAC32122×3×1×cos 60°7,所以BC.由正弦定理可得ABC外接圓的直徑2r2O2B,所以r.而球心O到截面ABC的距離dOO2AA11,設(shè)直三棱柱ABC­A1B1C1的外接球半徑為R,由球的截面性質(zhì)可得R2d2r2122,故R,所以該三棱柱的外接球的體積為VR3.故選B.(2)由三視圖知該幾何體是一個(gè)四棱錐,如圖所示,其底面ABCD是長(zhǎng)、寬分別為4和2的矩形,高為2,且側(cè)面SDC與底面ABCD垂直,且頂點(diǎn)S在底面上的射影為該側(cè)面上的底面邊的中點(diǎn)由該幾何體的結(jié)構(gòu)特征知球心在過(guò)底面中心O且與底面垂直的直線上,同時(shí)在過(guò)側(cè)面SDC的外接圓圓心且與側(cè)面SDC垂直的直線上因?yàn)镾DC為直角三角形,所以球心就為底面ABCD的中心O,所以外接球的半徑為RAC,故外接球的表面積為4R220.專題限時(shí)集訓(xùn)(十)空間幾何體表面積或體積的求解 建議A、B組各用時(shí):45分鐘 A組高考達(dá)標(biāo)一、選擇題1(2016·石家莊二模)一個(gè)三棱錐的正視圖和俯視圖如圖10­11所示,則該三棱錐的側(cè)視圖可能為()圖10­11D分析三視圖可知,該幾何體為如圖所示的三棱錐,其中平面ACD平面BCD,故選D.2(2016·濰坊二模)已知某幾何體的三視圖如圖10­12所示,則該幾何體的體積為()圖10­12A.B.C.D(2)B由三視圖可知該幾何體由半球內(nèi)挖去一個(gè)同底的圓錐得到,所以該幾何體的體積為V××13×12×1.3(2016·煙臺(tái)模擬)某幾何體的三視圖如圖10­13所示,則該幾何體的體積與其外接球的體積之比為()圖10­13A13B.C13D1D由三視圖可知,幾何體是一個(gè)三棱柱,體積V1×2×2×24,設(shè)外接球的半徑為R,則4R222222212,所以R.所以球的體積V2R34,體積比V1V2441.4(2016·湖北七市模擬)已知某幾何體的三視圖如圖10­14所示,其中俯視圖是正三角形,則該幾何體的體積為()圖10­14A.B2 C3D4B分析題意可知,該幾何體是由如圖所示的三棱柱ABC­A1B1C1截去四棱錐A­BEDC得到的,故其體積V×22×3××2×2,故選B.5(2016·廣州二模)如圖10­15,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某個(gè)四面體的三視圖,則該四面體的表面積為()圖10­15A884B882C22D.A在正方體中還原出該四面體C­A1EC1如圖所示,可求得該四面體的表面積為884.二、填空題6(2016·昆明一模)已知三棱錐P­ABC的頂點(diǎn)P,A,B,C在球O的球面上,ABC是邊長(zhǎng)為的等邊三角形,如果球O的表面積為36,那么P到平面ABC距離的最大值為_32依題意,邊長(zhǎng)是的等邊ABC的外接圓半徑r·1.球O的表面積為364R2,球O的半徑R3,球心O到平面ABC的距離d2,球面上的點(diǎn)P到平面ABC距離的最大值為Rd32.7(2016·山東省實(shí)驗(yàn)中學(xué)模擬)三棱錐P­ABC中,D,E分別為PB,PC的中點(diǎn),記三棱錐D­ABE的體積為V1,P­ABC的體積為V2,則_.如圖,設(shè)SABDS1,SPABS2,E到平面ABD的距離為h1,C到平面PAB的距離為h2,則S22S1,h22h1,V1S1h1,V2S2h2,所以.8(2016·??诙?半徑為2的球O中有一內(nèi)接正四棱柱(底面是正方形,側(cè)棱垂直底面)當(dāng)該正四棱柱的側(cè)面積最大時(shí),球的表面積與該正四棱柱的側(cè)面積之差是_16()設(shè)內(nèi)接正四棱柱底邊長(zhǎng)為a,高為h,那么162a2h22ah,正四棱柱的側(cè)面積S4ah16,球的表面積與該正四棱柱的側(cè)面積之差是16()三、解答題9(2016·合肥二模)如圖10­16,P為正方形ABCD外一點(diǎn),PB平面ABCD,PBAB2,E為PD的中點(diǎn)圖10­16(1)求證:PACE;(2)求四棱錐P­ABCD的表面積解(1)證明:取PA的中點(diǎn)F,連接EF,BF,則EFADBC,即EF,BC共面PB平面ABCD,PBBC,又BCAB且PBABB,BC平面PAB,BCPA.3分PBAB,BFPA,又BCBFB,PA平面EFBC,PACE.6分(2)設(shè)四棱錐P­ABCD的表面積為S,PB平面ABCD,PBCD,又CDBC,PBBCB,CD平面PBC,CDPC,即PCD為直角三角形,8分由(1)知BC平面PAB,而ADBC,AD平面PAB,故ADPA,即PAD也為直角三角形SABCD2×24,SPBCSPABSPDA×2×22,SPCD×2×2,10分S表SABCDSPBCSPDASPABSPCD102.12分10(2016·湖北七市模擬)如圖10­17,一個(gè)側(cè)棱長(zhǎng)為l的直三棱柱ABC­A1B1C1容器中盛有液體(不計(jì)容器厚度)若液面恰好分別過(guò)棱AC,BC,B1C1,A1C1的中點(diǎn)D,E,F(xiàn),G.圖10­17(1)求證:平面DEFG平面ABB1A1;(2)當(dāng)?shù)酌鍭BC水平放置時(shí),求液面的高解(1)證明:因?yàn)镈,E分別為棱AC,BC的中點(diǎn),所以DE是ABC的中位線,所以DEAB.又DE平面ABB1A1,AB平面ABB1A1,所以DE平面ABB1A1.同理DG平面ABB1A1,又DEDGD,所以平面DEFG平面ABB1A1.6分(2)當(dāng)直三棱柱ABC­A1B1C1容器的側(cè)面AA1B1B水平放置時(shí),由(1)可知,液體部分是直四棱柱,其高即為原直三棱柱ABC­A1B1C1容器的高,即側(cè)棱長(zhǎng)l,當(dāng)?shù)酌鍭BC水平放置時(shí),設(shè)液面的高為h,ABC的面積為S,則由已知條件可知,CDEABC,且SCDES,所以S四邊形ABEDS.9分由于兩種狀態(tài)下液體體積相等,所以V液體ShS四邊形ABEDlSl,即hl.因此,當(dāng)?shù)酌鍭BC水平放置時(shí),液面的高為l.12分B組名校沖刺一、選擇題1(2016·濟(jì)寧模擬)如圖10­18所示,四棱錐P­ABCD中,PD平面ABCD,且PD2,底面是邊長(zhǎng)為2的菱形,M是CD的中點(diǎn),平面PMB平面PCD,則該四棱錐的體積為()圖10­18A.B4C.D4A過(guò)點(diǎn)D在平面PCD內(nèi)作DNPM于點(diǎn)N,又平面PMB平面PCD,平面PMB平面PCDPM,所以DN平面PMB,所以DNBM.又由PD平面ABCD,得PDBM,又PD與DN是平面PDC內(nèi)的兩條相交直線,所以BM平面PDC,則BMCD.又點(diǎn)M是CD的中點(diǎn),BCCD,所以BCD60°,所以底面菱形ABCD的面積為2×2×sin 60°2,故該四棱錐的體積為×2×2.2(2016·重慶二模)某幾何體的三視圖如圖10­19所示,則該幾何體的體積為()圖10­19A.B.C.D.B根據(jù)三視圖可知,幾何體是由一個(gè)直三棱柱與一個(gè)三棱錐所組成的,其中該直三棱柱的底面是一個(gè)直角三角形(直角邊長(zhǎng)分別為1,2,高為1);該三棱錐的底面是一個(gè)直角三角形(腰長(zhǎng)分別為1,2,高為1),因此該幾何體的體積為×2×1×1××2×1×1,選B.3(2016·唐山二模)某幾何體的三視圖如圖10­20所示,則該幾何體的體積為()圖10­20A64B4C.D2D由三視圖知,該幾何體為一個(gè)底面半徑為1,高為1的圓柱體,與底面半徑為1,高為2的半圓柱體構(gòu)成,所以該三視圖的體積為×12×1×12×22,故選D.4(2016·江西上饒三模)從點(diǎn)P出發(fā)的三條射線PA,PB,PC兩兩成60°角,且分別與球O相切于A,B,C三點(diǎn),若OP,則球的體積為()A.B.C.D.C設(shè)OP交平面ABC于O,由題得ABC和PAB為正三角形,所以O(shè)AABAP.因?yàn)锳OPO,OAPA,所以,所以O(shè)A×1,即球的半徑為1,所以其體積為×13.選C.二、填空題5(2016·廣州二模)一個(gè)六棱柱的底面是正六邊形,側(cè)棱垂直于底面,所有棱的長(zhǎng)都為1,頂點(diǎn)在同一個(gè)球面上,則該球的體積為_. 【導(dǎo)學(xué)號(hào):67722038】由題意知六棱柱的底面正六邊形的外接圓半徑r1, 其高h(yuǎn)1,球半徑為R,該球的體積VR3×3.6(2016·開封一模)在三棱錐P­ABC中,ABBC,AC6,PC平面ABC,PC2,則該三棱錐的外接球表面積為_. 【導(dǎo)學(xué)號(hào):67722039】由題可知,ABC中AC邊上的高為,球心O在底面ABC的投影即為ABC的外心D,設(shè)DADBDCx,x232(x)2,解得x,R2x221(其中R為三棱錐外接球的半徑),外接球的表面積S4R2.三、解答題7如圖10­21,矩形CDEF和梯形ABCD互相垂直,BADADC90°,ABADCD,BEDF.圖10­21(1)若M為EA中點(diǎn),求證:AC平面MDF;(2)若AB2,求四棱錐E­ABCD的體積解(1)證明:設(shè)EC與DF交于點(diǎn)N,連接MN,在矩形CDEF中,點(diǎn)N為EC中點(diǎn),因?yàn)镸為EA中點(diǎn),所以MNAC.2分又因?yàn)锳C平面MDF,MN平面MDF,所以AC平面MDF.4分(2)取CD中點(diǎn)為G,連接BG,EG,平面CDEF平面ABCD,平面CDEF平面ABCDCD,AD平面ABCD,ADCD,所以AD平面CDEF,同理ED平面ABCD,7分所以ED的長(zhǎng)即為四棱錐E­ABCD的高.8分在梯形ABCD中,ABCDDG,ABDG,所以四邊形ABGD是平行四邊形,BGAD,所以BG平面CDEF.又DF平面CDEF,所以BGDF,又BEDF,BEBGB,所以DF平面BEG,DFEG.10分注意到RtDEGRtEFD,所以DE2DG·EF8,DE2,所以VE­ABCDS梯形ABCD·ED4.12分8如圖10­22,在多面體ABCDM中,BCD是等邊三角形,CMD是等腰直角三角形,CMD90°,平面CMD平面BCD,AB平面BCD,點(diǎn)O為CD的中點(diǎn),連接OM.圖10­22(1)求證:OM平面ABD;(2)若ABBC2,求三棱錐A­BDM的體積解(1)證明:CMD是等腰直角三角形,CMD90°,點(diǎn)O為CD的中點(diǎn),OMCD.1分平面CMD平面BCD,平面CMD平面BCDCD,OM平面CMD,OM平面BCD.2分AB平面BCD,OMAB.3分AB平面ABD,OM平面ABD,OM平面ABD.4分(2)法一:由(1)知OM平面ABD,點(diǎn)M到平面ABD的距離等于點(diǎn)O到平面ABD的距離.5分過(guò)點(diǎn)O作OHBD,垂足為點(diǎn)H.AB平面BCD,OH平面BCD,OHAB.6分AB平面ABD,BD平面ABD,ABBDB,OH平面ABD.7分ABBC2,BCD是等邊三角形,BD2,OD1,OHOD·sin 60°.9分V三棱錐A­BDMV三棱錐M­ABD××AB·BD·OH××2×2×.11分三棱錐A­BDM的體積為.12分法二:由(1)知OM平面ABD,點(diǎn)M到平面ABD的距離等于點(diǎn)O到平面ABD的距離.5分ABBC2,BCD是等邊三角形,BD2,OD1.6分連接OB,則OBCD,OBBD·sin 60°.7分V三棱錐A­BDMV三棱錐M­ABDV三棱錐O­ABDV三棱錐A­BDO××OD·OB·AB××1××2.11分三棱錐A­BDM的體積為.12分

注意事項(xiàng)

本文(高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題4 立體幾何 突破點(diǎn)10 空間幾何體表面積或體積的求解教師用書 理-人教版高三數(shù)學(xué)試題)為本站會(huì)員(文***)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!