函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性及其應(yīng)用.doc
函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性及其應(yīng)用摘要:隨著科學(xué)技術(shù)的發(fā)展,初等函數(shù)已經(jīng)滿足不了人們的需要.自柯西給出了無窮級(jí)數(shù)的定義后,隨著人們對(duì)級(jí)數(shù)的深入研究,無窮級(jí)數(shù)的理論得到了飛速的發(fā)展.有了無窮級(jí)數(shù),函數(shù)項(xiàng)級(jí)數(shù)應(yīng)運(yùn)而生.函數(shù)項(xiàng)級(jí)數(shù)在數(shù)學(xué)科學(xué)本身及工程技術(shù)領(lǐng)域里有廣泛的應(yīng)用,函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性在應(yīng)用中起著至關(guān)重要的作用,因此研究函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性及其判定就成了應(yīng)用中重要的環(huán)節(jié).本文介紹函數(shù)項(xiàng)級(jí)數(shù)一致收斂的相關(guān)概念,對(duì)函數(shù)項(xiàng)級(jí)數(shù)一致收斂性的判定方法進(jìn)行梳理、歸納,并舉例說明,以一類最簡(jiǎn)單的函數(shù)項(xiàng)級(jí)數(shù)冪級(jí)數(shù)為例,說明函數(shù)項(xiàng)級(jí)數(shù)在計(jì)算方面的應(yīng)用.關(guān)鍵詞:函數(shù)項(xiàng)級(jí)數(shù);一致收斂;冪級(jí)數(shù)Uniformly Convergence Series of Functions and ApplicationAbstract: With the development of science and technology, elementary function has failed to meet the needs of the people. Since the Cauchy gives the definition of infinite series, the theory of series has been developed rapidly with the in-depth study of it. With the infinite series, series of functions came into being. Series of functions has a wide application in mathematics and engineering science. The uniformly convergence of series of functions plays an important role in application. During the application, the uniformly convergence of series of function and its judgment become important. This article describes the concept of the uniformly convergence of series of functions, to sum up the judgment of the uniformly convergence of series of functions. We give many examples and take the series of powers to illustrate the application in calculation of series of functions.Key words: series of functions; uniformly convergence; series of powers目 錄1 引言12 函數(shù)項(xiàng)級(jí)數(shù)的相關(guān)概念介紹2 2.1 函數(shù)列及其一致收斂性22.2 函數(shù)項(xiàng)級(jí)數(shù)及其一致收斂性32.3 一致收斂函數(shù)項(xiàng)級(jí)數(shù)的性質(zhì)43 函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性判別法53.1 一般判別法53.2 魏爾斯特拉斯判別法73.3 阿貝爾判別法與狄利克雷判別法7 3.3.1 阿貝爾判別法 8 3.3.2 狄利克雷判別法 83.4 類似數(shù)項(xiàng)級(jí)數(shù)判別法的函數(shù)項(xiàng)級(jí)數(shù)一致收斂判別法 10 3.4.1 比式判別法10 3.4.2 根式判別法11 3.4.3 對(duì)數(shù)判別法123.5 Dini判別法134 冪級(jí)數(shù)的應(yīng)用 144.1 冪級(jí)數(shù)的定義 144.2 冪級(jí)數(shù)的應(yīng)用 14 4.2.1 冪級(jí)數(shù)在近似計(jì)算中的應(yīng)用14 4.2.2 冪級(jí)數(shù)在計(jì)算積分中的應(yīng)用15 4.2.3 冪級(jí)數(shù)在求極限中的應(yīng)用15 4.2.4 冪級(jí)數(shù)在數(shù)列求和中的應(yīng)用16 4.2.5 冪級(jí)數(shù)在歐拉公式推導(dǎo)中的應(yīng)用16 4.2.6 冪級(jí)數(shù)在求導(dǎo)中的應(yīng)用17 4.2.7 冪級(jí)數(shù)在概率組合中的應(yīng)用17 4.2.8 冪級(jí)數(shù)在證明不等式中的應(yīng)用18 4.2.9 用冪級(jí)數(shù)形式表示某些非初等函數(shù)185 總結(jié)19致謝20參考文獻(xiàn)211 引言隨著科學(xué)技術(shù)的發(fā)展,人們對(duì)自然界的認(rèn)識(shí)逐步深化,發(fā)現(xiàn)許多自然現(xiàn)象和工程技術(shù)運(yùn)用初等函數(shù)已經(jīng)滿足不了人們的需要,因此要求人們?nèi)?gòu)造新的函數(shù).自19世紀(jì)柯西給出了無窮級(jí)數(shù)的定義后,隨著人們對(duì)其深入研究,無窮級(jí)數(shù)的理論得到了飛速的發(fā)展.有了無窮級(jí)數(shù),函數(shù)項(xiàng)級(jí)數(shù)應(yīng)運(yùn)而生.首先函數(shù)項(xiàng)級(jí)數(shù)為函數(shù)的構(gòu)造開辟了一個(gè)新天地,例如,1872年魏爾斯特拉斯利用函數(shù)項(xiàng)級(jí)數(shù)給出了一個(gè)處處連續(xù)但處處不可導(dǎo)的函數(shù)的例子.其次,函數(shù)項(xiàng)級(jí)數(shù)理論提供了研究函數(shù)的一個(gè)基本方法,特別是利用級(jí)數(shù)的理論進(jìn)行函數(shù)的Taylor展開和Fourier展開.實(shí)際上,函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性理論對(duì)近代各種函數(shù)逼近理論以及無窮維空間中元素按基底的展開理論都產(chǎn)生了重大的影響(朱正佑,2001)1.函數(shù)項(xiàng)級(jí)數(shù)在數(shù)學(xué)科學(xué)本身及工程技術(shù)領(lǐng)域里有廣泛的應(yīng)用,函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性在應(yīng)用中起著至關(guān)重要的作用,因此研究函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性及其判定就成了應(yīng)用中重要的環(huán)節(jié).本文介紹函數(shù)項(xiàng)級(jí)數(shù)的一致收斂的相關(guān)概念、對(duì)函數(shù)項(xiàng)級(jí)數(shù)一致收斂性的判定方法進(jìn)行梳理、歸納,并舉例說明,并且以一類最簡(jiǎn)單的函數(shù)項(xiàng)級(jí)數(shù)冪級(jí)數(shù)為例,對(duì)其在計(jì)算方面的應(yīng)用進(jìn)行舉例說明.2 函數(shù)項(xiàng)級(jí)數(shù)的相關(guān)概念介紹2.1 函數(shù)列及其一致收斂性定義1 設(shè) 是一列定義在同一數(shù)集上的函數(shù),稱為定義在上的函數(shù)列,也可簡(jiǎn)單的寫作:或,.設(shè),以代入可得數(shù)列 若數(shù)列收斂,則稱函數(shù)列在點(diǎn)收斂,稱為函數(shù)列的收斂點(diǎn).若數(shù)列發(fā)散,則稱函數(shù)列在點(diǎn)發(fā)散.若函數(shù)列在數(shù)集上每一點(diǎn)都收斂,則稱在數(shù)集上收斂.這時(shí)上每一點(diǎn),都有數(shù)列的一個(gè)極限值與之相對(duì)應(yīng),由這個(gè)對(duì)應(yīng)法則所確定的上的函數(shù),稱為函數(shù)列的極限函數(shù).若極限函數(shù)記作,則有 ,或 ,. 使函數(shù)列收斂的全體收斂點(diǎn)集合,稱為函數(shù)列的收斂域.定義2 設(shè)函數(shù)列與函數(shù)定義在同一數(shù)集上,若對(duì)任給的正數(shù),總存在某一正整數(shù),使得當(dāng)時(shí),對(duì)一切,都有 ,則稱函數(shù)列在上一致收斂于,記作 , . 注:本文用“”表示一致收斂.由定義看到,如果函數(shù)列在上一致收斂,那么對(duì)于所給的,不管上哪一點(diǎn),總存在公共的(即的選取僅與有關(guān),與的取值無關(guān)),只要,都有 .由此可以看到函數(shù)列在上一致收斂,必在上每一點(diǎn)都收斂.反之,在上每一點(diǎn)都收斂的函數(shù)列,在上不一定一致收斂.2.2 函數(shù)項(xiàng)級(jí)數(shù)及其一致收斂性定義3 設(shè)是定義在數(shù)集上的一個(gè)函數(shù)列,表達(dá)式 +, (1)稱為定義在上的函數(shù)項(xiàng)級(jí)數(shù),簡(jiǎn)記為 或。稱,為函數(shù)項(xiàng)級(jí)數(shù)的部分和函數(shù)列。若,數(shù)項(xiàng)級(jí)數(shù) (2)收斂,即部分和當(dāng)時(shí)極限存在,則稱級(jí)數(shù)(1)在點(diǎn)收斂,稱為級(jí)數(shù)(1)的收斂點(diǎn)若級(jí)數(shù)(2)發(fā)散,則稱級(jí)數(shù)(1)在點(diǎn)發(fā)散.若級(jí)數(shù)(1)在的某個(gè)子集上每點(diǎn)都收斂,則稱級(jí)數(shù)(1)在上收斂若為級(jí)數(shù)(1)全體收斂點(diǎn)的集合,這時(shí)則稱為級(jí)數(shù)(1)的收斂域級(jí)數(shù)(1)在上每一點(diǎn)與其所對(duì)應(yīng)的數(shù)項(xiàng)級(jí)數(shù)(2)的和構(gòu)成一個(gè)定義在上的函數(shù),稱為級(jí)數(shù)(1)的和函數(shù),并寫作 ,,即 ,也就是說,函數(shù)項(xiàng)級(jí)數(shù)(1)的收斂性就是指它的部分和函數(shù)列的收斂性定義4 設(shè)是函數(shù)項(xiàng)級(jí)數(shù)的部分和函數(shù)列若在數(shù)集上一致收斂于函數(shù),則稱函數(shù)項(xiàng)級(jí)數(shù)在上一致收斂于函數(shù),或稱在上一致收斂(華東師范大學(xué)數(shù)學(xué)系,2001)2.2.3 一致收斂函數(shù)項(xiàng)級(jí)數(shù)的性質(zhì) 定理1 (連續(xù)性)若函數(shù)項(xiàng)級(jí)數(shù)在區(qū)間上一致收斂,且每一項(xiàng)都連續(xù),則其和函數(shù)在上也連續(xù).它指出:(無限項(xiàng))求和運(yùn)算與求極限運(yùn)算可以交換順序,即 .定理2 (逐項(xiàng)求積)若函數(shù)項(xiàng)級(jí)數(shù)在上一致收斂,且每一項(xiàng)都連續(xù),則 .此定理指出,函數(shù)項(xiàng)級(jí)數(shù)在一致收斂的情況下,求和運(yùn)算與求積分運(yùn)算可以交換順序.定理3 (逐項(xiàng)求導(dǎo))若函數(shù)項(xiàng)級(jí)數(shù)在上每一項(xiàng)都有連續(xù)的導(dǎo)函數(shù),為的收斂點(diǎn),且在上一致收斂,則 .此定理指出,函數(shù)項(xiàng)級(jí)數(shù)在一致收斂的情況下,求和運(yùn)算與微分運(yùn)算可以交換順序(陶桂秀,2005)3.3 函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性判別法3.1 一般方法判別函數(shù)項(xiàng)級(jí)數(shù)一致收斂既是數(shù)學(xué)分析中的一個(gè)重點(diǎn),又是一個(gè)難點(diǎn).一般的情況下,證明一致收斂會(huì)利用一致收斂的定義,即定義4來證明.定義4的條件太強(qiáng),函數(shù)項(xiàng)級(jí)數(shù)固定一點(diǎn),實(shí)際上是一個(gè)特殊數(shù)列.受此啟發(fā),利用數(shù)列的性質(zhì)得到以下定理:定理4 (一致收斂的柯西準(zhǔn)則)函數(shù)項(xiàng)級(jí)數(shù)在數(shù)集上一致收斂的充要條件為:對(duì)任給的正數(shù),總存在某正整數(shù),使得當(dāng)時(shí),對(duì)一切和一切正整數(shù),都有 或 .此定理中當(dāng)時(shí),得到函數(shù)項(xiàng)級(jí)數(shù)一致收斂的必要條件.推論 函數(shù)項(xiàng)級(jí)數(shù)在數(shù)集上一致收斂的必要條件為:函數(shù)列在上一致收斂于零.設(shè)函數(shù)項(xiàng)級(jí)數(shù)在上的和函數(shù)為,稱 為函數(shù)項(xiàng)級(jí)數(shù)的余項(xiàng).定理5 函數(shù)項(xiàng)級(jí)數(shù)在數(shù)集上一致收斂于的充要條件是: .證明 必要性 因?yàn)樵趨^(qū)間上一致收斂,所以,使得當(dāng)時(shí),對(duì)一切,都有,即,所以,所以.充分性 設(shè)在上不一致收斂,即,,,使得,即,所以.與已知矛盾(李嵐,2003)4. 例1若在上可積,且與在上都可積,設(shè),則在上一致收斂于.證明 (),所以利用定理1,當(dāng)時(shí),一致收斂于.例2 設(shè),在上連續(xù),又在收斂于連續(xù)函數(shù),則在一致收斂于.證明 已知(其中)是單調(diào)遞減且趨于0,所以,有,且,時(shí),有.將固定,令,因?yàn)樵谏线B續(xù),既然,所以,當(dāng)時(shí).從而時(shí)更有即僅當(dāng).如上所述,對(duì)每個(gè)點(diǎn),可找到相應(yīng)的鄰域及相應(yīng)的,使得時(shí),對(duì)恒有. 如此構(gòu)成的一個(gè)開覆蓋,從而必存在有限子覆蓋.不妨記為,于是,總,使得當(dāng)時(shí),取,那么當(dāng)時(shí),恒有.由定理2得,在一致收斂于.3.2 魏爾斯特拉斯判別法判別函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性除了定義及定理4外,有些級(jí)數(shù)還可以根據(jù)級(jí)數(shù)各項(xiàng)的特性來判別.定理6 (魏爾斯特拉斯判別法)設(shè)函數(shù)項(xiàng)級(jí)數(shù)定義在數(shù)集上,為收斂的正項(xiàng)級(jí)數(shù),若對(duì)一切,有 , (3)則函數(shù)項(xiàng)級(jí)數(shù)在上一致收斂.證明 由假設(shè)正項(xiàng)級(jí)數(shù)收斂,根據(jù)數(shù)項(xiàng)級(jí)數(shù)的柯西準(zhǔn)則,任給正數(shù),存在某正整數(shù),使得當(dāng)及任何正整數(shù),有 .又由(3)式對(duì)一切有 .根據(jù)函數(shù)項(xiàng)級(jí)數(shù)一致收斂的柯西準(zhǔn)則,級(jí)數(shù)在上一致收斂. 例3 判斷函數(shù)項(xiàng)級(jí)數(shù)在上的一致收斂性.證明 因?yàn)閷?duì)一切有 ,而正項(xiàng)級(jí)數(shù)是收斂的,所以根據(jù)魏爾斯特拉斯判別法知,函數(shù)項(xiàng)級(jí)數(shù)在上是一致收斂的.定理6也稱為判別法或優(yōu)級(jí)數(shù)判別法.當(dāng)級(jí)數(shù)與級(jí)數(shù)在區(qū)間上成立關(guān)系式(3)時(shí),則稱級(jí)數(shù)在上優(yōu)于級(jí)數(shù),或稱為的優(yōu)級(jí)數(shù).3.3 阿貝爾判別法與狄利克雷判別法下面討論定義在區(qū)間上形如 (4)的函數(shù)項(xiàng)級(jí)數(shù)的一致收斂判別法,它與數(shù)項(xiàng)級(jí)數(shù)一樣,也是基于阿貝爾分部求和公式. 3.3.1 阿貝爾判別法定理7 (阿貝爾判別法)設(shè)()在區(qū)間上一致收斂;()對(duì)于每一個(gè),是單調(diào)的;()在上一致有界,即對(duì)一切和正整數(shù),存在正數(shù),使得 .則形如的級(jí)數(shù)在上一致收斂.證明 由(),任給,存在某正整數(shù),使得當(dāng)及任何正整數(shù),對(duì)一切,有 又由(),()及阿貝爾引理得到 .于是根據(jù)函數(shù)項(xiàng)級(jí)數(shù)一致收斂性的柯西準(zhǔn)則就得到本定理的結(jié)論.例4 判斷函數(shù)項(xiàng)級(jí)數(shù),的一致收斂性.證明 記 ,,因?yàn)槭鞘諗康臄?shù)項(xiàng)級(jí)數(shù),從而在上一致收斂.又因?yàn)槊總€(gè),單調(diào),且在上一致有界,于是由阿貝爾判別法易知級(jí)數(shù)(4)在上一致收斂(劉慶生,2009;翟永恒,2009;劉桂仙,2009)5.3.3.2 狄利克雷判別法定理8 (狄利克雷判別法)設(shè)()的部分和函數(shù)列 ,(n=1,2,)在上一致有界;()對(duì)于每一個(gè),是單調(diào)的;()在上,則形如的級(jí)數(shù)在上一致收斂.證明 由(),存在正數(shù),對(duì)一切,有.因此當(dāng)為任何正整數(shù)時(shí), .對(duì)任何一個(gè),再由()及阿貝爾引理,得到 .再由(),對(duì)任給的,存在正數(shù),當(dāng)時(shí),對(duì)一切,有 ,所以, .于是由一致收斂性的柯西準(zhǔn)則,級(jí)數(shù)(4)在上一致收斂.例5 函數(shù)項(xiàng)級(jí)數(shù) 在上一致收斂.證明 因?yàn)橛?,時(shí),一致收斂,單調(diào)且并且一致有界,所以由阿貝爾判別法得函數(shù)項(xiàng)級(jí)數(shù) 在上一致收斂.例6 若數(shù)列單調(diào)且收斂于零,則級(jí)數(shù) 在上一致收斂.證明 由,在上有 ,所以,級(jí)數(shù)的部分和函數(shù)列在上一致有界,于是令 ,則由狄利克雷判別法可得級(jí)數(shù)在上一致收斂. 對(duì)于級(jí)數(shù),只要單調(diào)且收斂于零,那么級(jí)數(shù)在不包含的任何閉區(qū)間上都一致收斂.3.4 類似數(shù)項(xiàng)級(jí)數(shù)判別法的函數(shù)項(xiàng)級(jí)數(shù)一致收斂判別法函數(shù)項(xiàng)級(jí)數(shù)作為數(shù)項(xiàng)級(jí)數(shù)的推廣,在研究?jī)?nèi)容上同數(shù)項(xiàng)級(jí)數(shù)有許多極其相似的地方,比如它們的收斂性、和的問題,但函數(shù)項(xiàng)級(jí)數(shù)還有一點(diǎn)不同于數(shù)項(xiàng)級(jí)數(shù),就是它的一致收斂性,對(duì)比數(shù)項(xiàng)級(jí)數(shù)的收斂性和函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性判別法,不難發(fā)現(xiàn),它們?cè)谂袛喾椒ㄉ蠘O其相似,特別是在它們判別法的名稱上,比如它們都有Cauchy判別法、Abel判別法、Dirichlete判別法等.對(duì)于函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性,有沒有類似于數(shù)項(xiàng)級(jí)數(shù)收斂性判別的方法,是一個(gè)值得研究的課題.有鑒于此,結(jié)合數(shù)項(xiàng)級(jí)數(shù)的比式判別法和根式判別法,可以得到函數(shù)項(xiàng)級(jí)數(shù)一致收斂性的比式判別法和根式判別法,同時(shí)利用級(jí)數(shù)的收斂性和優(yōu)級(jí)數(shù)判別法還可得到函數(shù)項(xiàng)級(jí)數(shù)一致收斂性的對(duì)數(shù)判別法(毛一波,2006)6. 3.4.1 比式判別法 定理9設(shè)為定義在數(shù)集上正的函數(shù)列,記,存在正整數(shù)及實(shí)數(shù)、,使得:,對(duì)任意的,成立,則函數(shù)項(xiàng)級(jí)數(shù)在上一致收斂.證明易見,而等比級(jí)數(shù),當(dāng)公比時(shí)收斂,從而由函數(shù)項(xiàng)級(jí)數(shù)一致收斂的優(yōu)級(jí)數(shù)判別法知,在上一致收斂.定理9有極限形式:定理10設(shè)為定義在數(shù)集上正的函數(shù)列,記,若: ,且在上一致有界,則函數(shù)項(xiàng)級(jí)數(shù)在上一致收斂. 例7 設(shè)為定義在上的函數(shù)列,證明級(jí)數(shù)在上一致收斂.證明 由于: ,由定理10,知函數(shù)項(xiàng)級(jí)數(shù)在上一致收斂.3.4.2 根式判別法定理11 設(shè)為定義在數(shù)集上的函數(shù)列,若存在正整數(shù),使得 ,成立,則函數(shù)項(xiàng)級(jí)數(shù)在上一致收斂.證明 由定理?xiàng)l件,成立,而幾何級(jí)數(shù)收斂,由優(yōu)級(jí)數(shù)判別法,函數(shù)項(xiàng)級(jí)數(shù)在上一致收斂.注:當(dāng)定理11條件成立時(shí),級(jí)數(shù)在上還絕對(duì)收斂.定理11的極限形式為:定理12 設(shè)為定義在數(shù)集上的函數(shù)列,若 ,成立,則函數(shù)項(xiàng)級(jí)數(shù)在上一致收斂. 例8 證明函數(shù)項(xiàng)級(jí)數(shù)在上一致收斂(其中為大于1的實(shí)常數(shù)).證明 因?yàn)?,由定理12知,函數(shù)項(xiàng)級(jí)數(shù)在上一致收斂(吳良森,毛玉輝,2002)7.3.4.3 對(duì)數(shù)判別法定理13設(shè)為定義在數(shù)集上正的函數(shù)列,若 存在,那么()若,,則函數(shù)項(xiàng)級(jí)數(shù)在上一致收斂.()若,,則函數(shù)項(xiàng)級(jí)數(shù)在上不一致收斂.證明 ()由定理?xiàng)l件知,對(duì),,使得,有 ,即 ,則當(dāng),成立時(shí),有,而級(jí)數(shù)當(dāng)時(shí)收斂,由優(yōu)級(jí)數(shù)判別法知函數(shù)項(xiàng)級(jí)數(shù)在上一致收斂;()當(dāng)對(duì)成立時(shí),有,級(jí)數(shù)當(dāng)時(shí)發(fā)散,從而函數(shù)項(xiàng)級(jí)數(shù)在上不一致收斂.3.5 Dini判別法定理14 若()每個(gè)均在上連續(xù)且非負(fù);()在上收斂于連續(xù)函數(shù);則在上一致收斂于.例9 證明:在內(nèi)閉一致收斂.證明 顯然,在上一致有界.任取對(duì),易證當(dāng)充分大時(shí)單調(diào)遞減且,每個(gè)及均在上連續(xù),故由Dini定理知在上一致收斂于0,于是,由狄利克雷判別法知原級(jí)數(shù)在上一致收斂.所以,由的任意性知,原級(jí)數(shù)在上內(nèi)閉一致收斂(吉米多維奇,1987)8 .4 冪級(jí)數(shù)的應(yīng)用 冪級(jí)數(shù)是一類最簡(jiǎn)單的函數(shù)項(xiàng)級(jí)數(shù),下面我們以冪級(jí)數(shù)為例,說明函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性在計(jì)算中的應(yīng)用4.1 冪級(jí)數(shù)的定義定義5 由冪函數(shù)列所產(chǎn)生的函數(shù)項(xiàng)級(jí)數(shù),稱為冪級(jí)數(shù),是一類最簡(jiǎn)單的函數(shù)項(xiàng)級(jí)數(shù),從某種意義上講,它可以看作是無窮多項(xiàng)式函數(shù)的延伸.4.2 冪級(jí)數(shù)的應(yīng)用冪級(jí)數(shù)是高等數(shù)學(xué)中的一個(gè)非常重要的內(nèi)容,其簡(jiǎn)單的結(jié)構(gòu)形式和逐項(xiàng)求導(dǎo)、逐項(xiàng)求積的優(yōu)良性質(zhì)使之成為一種有效的計(jì)算工具,它能應(yīng)用于近似計(jì)算、積分計(jì)算、數(shù)項(xiàng)級(jí)數(shù)求和、歐拉公式的推導(dǎo)等問題中.巧妙地利用函數(shù)的冪級(jí)數(shù)展開式及冪級(jí)數(shù)的性質(zhì)能夠把一個(gè)復(fù)雜的性質(zhì)以及一些不容易把握的函數(shù)表達(dá)成形式最簡(jiǎn)單、性質(zhì)最好的級(jí)數(shù)形式,所以用它解題往往思路清晰、條理清楚(趙瑜,2009)9.4.2.1 冪級(jí)數(shù)在近似計(jì)算中的應(yīng)用我們可以利用冪級(jí)數(shù)展開式進(jìn)行近似計(jì)算,即在展開式有效的區(qū)間上,函數(shù)值可以近似的利用這個(gè)級(jí)數(shù)按精確度要求計(jì)算出來(同濟(jì)大學(xué)應(yīng)用數(shù)學(xué)系,2002)10.例10 計(jì)算積分 的近似值,要求誤差不超過0.0001.解 由于,因此所給積分是反常積分.如果定義被積函數(shù)在處的值為1,則它在積分區(qū)間上連續(xù).展開被積函數(shù),有 ,在區(qū)間上逐項(xiàng)積分,得 .因?yàn)榈谒捻?xiàng)的絕對(duì)值 ,所以取前三項(xiàng)的和作為積分的近似值: ,算得 .4.2.2 冪級(jí)數(shù)在計(jì)算積分中的應(yīng)用當(dāng)?shù)脑瘮?shù)不能用初等函數(shù)的有限形式表示出來時(shí),計(jì)算的定積分就遇到了困難.現(xiàn)在,我們可以利用冪級(jí)數(shù)展開式取有限項(xiàng)的辦法近似計(jì)算這些定積分的值.具體計(jì)算時(shí),要求被積函數(shù)能夠展成收斂的冪級(jí)數(shù),且積分區(qū)間必須在冪級(jí)數(shù)的收斂域之內(nèi),然后利用冪級(jí)數(shù)的逐項(xiàng)積分性質(zhì)來計(jì)算所求積分的值.例11 證明: 證明 因?yàn)?,所以 =,4.2.3 冪級(jí)數(shù)在求極限中的應(yīng)用求函數(shù)極限的方法很多,冪級(jí)數(shù)法也是其中之一.例12 求的值.解 因?yàn)?, , 所以4.2.4 冪級(jí)數(shù)在數(shù)項(xiàng)求和中的應(yīng)用一致收斂的冪級(jí)數(shù)的性質(zhì):冪級(jí)數(shù)在收斂區(qū)間內(nèi)可逐項(xiàng)求導(dǎo)與逐項(xiàng)求積分,可用于計(jì)算冪級(jí)數(shù)的和(裴禮文,1983)11.例13 求解 當(dāng) 時(shí),設(shè) =.設(shè), 則 ,且 ,從而 當(dāng)時(shí), ,此時(shí),.令,可得 .4.2.5 冪級(jí)數(shù)在歐拉公式推導(dǎo)中的應(yīng)用例14 試用冪級(jí)數(shù)的展開式來推導(dǎo)歐拉公式.解 當(dāng)為實(shí)數(shù)時(shí),由指數(shù)函數(shù)的冪級(jí)數(shù)展開式知,因?yàn)?所以 ,即 , 在上式中以置換可得 , 再由兩式聯(lián)立,解得: .4.2.6 冪級(jí)數(shù)在求導(dǎo)中的應(yīng)用例15 求在處的階導(dǎo)數(shù).解 因?yàn)楹瘮?shù)在處的泰勒級(jí)數(shù)為,所以可先將用間接方法展成的冪級(jí)數(shù),然后從的系數(shù)中解出,進(jìn)行兩次積分:則,即 .4.2.7 冪級(jí)數(shù)在概率組合計(jì)算中的應(yīng)用定義6 設(shè)是一個(gè)數(shù)列,若存在一個(gè)函數(shù),使得成立,則稱為數(shù)列的生成函數(shù).例16 將一顆骰子連續(xù)投擲10次,問:出現(xiàn)20點(diǎn)的概率是多少?解 設(shè)表示共出現(xiàn)點(diǎn)的方式的總數(shù),顯然.從而的生成函數(shù)為:,因?yàn)樗缘恼归_式中項(xiàng)的系數(shù)為,于是出現(xiàn)20點(diǎn)的概率為:.4.2.8 冪級(jí)數(shù)在證明不等式中的應(yīng)用冪級(jí)數(shù)是表達(dá)函數(shù)的重要工具,因此也可應(yīng)用于證明不等式(張淑輝,2005)12.例17 證明不等式.證明 因?yàn)?,而 ,,由于 ,故 .4.2.9 用冪級(jí)數(shù)形式表示某些非初等函數(shù)例18 求連續(xù)函數(shù)的原函數(shù).解 的原函數(shù)為,.,.令,有對(duì)冪級(jí)數(shù)在收斂區(qū)間內(nèi)逐項(xiàng)求積分,可得, 另外,冪級(jí)數(shù)還可以定義三角函數(shù)和指數(shù)函數(shù)等等.冪級(jí)數(shù)的應(yīng)用非常廣泛,我們要在實(shí)際應(yīng)用中善于發(fā)現(xiàn),充分利用,以求最好的解決問題. 總結(jié) 數(shù)學(xué)作為一種創(chuàng)造性活動(dòng)不僅擁有真理,而且擁有至高無上的美,18世紀(jì)是分析的時(shí)代,數(shù)學(xué)進(jìn)入到更高層次的研究,函數(shù)項(xiàng)級(jí)數(shù)是數(shù)學(xué)分析中的重要組成部分,因此研究函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性具有重大的意義.目前,對(duì)于函數(shù)項(xiàng)級(jí)數(shù)的研究已經(jīng)有了非常豐富的研究資料,并且其應(yīng)用領(lǐng)域越來越廣泛,在數(shù)學(xué)本身以及自然現(xiàn)象、工程技術(shù),物理研究都有很大的作用.本文介紹了函數(shù)項(xiàng)級(jí)數(shù)的歷史背景、給出了函數(shù)項(xiàng)級(jí)數(shù)的概念、性質(zhì)、函數(shù)列及其一致收斂性、函數(shù)項(xiàng)級(jí)數(shù)及其一致收斂性,歸納梳理函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性的判定方法,以最簡(jiǎn)單的函數(shù)項(xiàng)級(jí)數(shù)冪級(jí)數(shù)為例,說明函數(shù)項(xiàng)級(jí)數(shù)的應(yīng)用.隨著科學(xué)技術(shù)的發(fā)展,函數(shù)項(xiàng)級(jí)數(shù)作為數(shù)學(xué)分析中的一項(xiàng)重要內(nèi)容,會(huì)在更多的領(lǐng)域擁有更廣泛的應(yīng)用,對(duì)其的研究也將更加的深入、透徹.參考文獻(xiàn)1 朱正佑.數(shù)學(xué)分析(下冊(cè))M.上海:上海大學(xué)出版社,2001.2 華東師范大學(xué)數(shù)學(xué)系.數(shù)學(xué)分析(下冊(cè))M.北京:高等教育出版社, 2001.3 陶桂秀.關(guān)于一致收斂函數(shù)項(xiàng)級(jí)數(shù)的注記J.銅陵學(xué)院學(xué)報(bào),2005,(2):75.4 李嵐.函數(shù)項(xiàng)級(jí)數(shù)一致收斂定義的推廣及其應(yīng)用J.陜西教育學(xué)院學(xué)報(bào),2003,19 (2):86-87.5 劉慶升,翟永恒,劉桂仙.函數(shù)項(xiàng)級(jí)數(shù)一致收斂的判別法J.科技信息,2009,(9):5316 毛一波.函數(shù)項(xiàng)級(jí)數(shù)一致收斂性的判定J.重慶文理學(xué)院學(xué)報(bào)(自然科學(xué)版),2006,5(4):55-56.7 吳良森,毛羽輝等.數(shù)學(xué)分析習(xí)題精解M.北京:科學(xué)出版社,2002.8 蘇吉米多維奇.數(shù)學(xué)分析習(xí)題集(四)M.費(fèi)定暉,周學(xué)圣譯.濟(jì)南:山東科學(xué)技術(shù)出版社.1987.9 趙瑜.淺談冪級(jí)數(shù)在計(jì)算中的應(yīng)用J.前沿,2009,(8):282-283.10 同濟(jì)大學(xué)數(shù)學(xué)系.高等數(shù)學(xué)(下冊(cè))M.北京:高等教育出版社,2002.11 裴禮文.數(shù)學(xué)分析中典型例題與方法M.北京:高等教育出版社,1993.12 張淑輝.冪級(jí)數(shù)的應(yīng)用J.太原教育學(xué)院學(xué)報(bào),2005,(23):94-96.13 W.Rudin.Principles of Mathematical AnalysisM.New York:Springer-Verlag,1964.14 XU Chang-qing.Boursuks Problem in a Special Normed SpaceJ.Northeast Math.J,2004,(1):79-83.21