高中數(shù)學(xué) 3.1.1變化率問題課件 新人教版選修1-1.ppt
3.1.1變化率問題,高二數(shù)學(xué) 選修1-1,問題1 氣球膨脹率,在吹氣球的過程中, 可發(fā)現(xiàn),隨著氣球內(nèi)空氣容量的增加, 氣球的半徑增加得越來越慢. 從數(shù)學(xué)的角度, 如何描述這種現(xiàn)象呢?,氣球的體積V(單位:L)與半徑r (單位:dm)之間的函數(shù)關(guān)系是,若將半徑 r 表示為體積V的函數(shù), 那么,當(dāng)空氣容量V從0L增加到1L , 氣球半徑增加了,氣球的平均膨脹率為,當(dāng)空氣容量V從1L增加到2 L , 氣球半徑增加了,氣球的平均膨脹率為,隨著氣球體積逐漸變大,它的平均膨脹率逐漸變小,思考?,當(dāng)空氣容量從V1增加到V2時(shí),氣球的平均膨脹率是多少?,問題2 高臺(tái)跳水,在高臺(tái)跳水運(yùn)動(dòng)中, 運(yùn)動(dòng)員相對(duì)于水面的高度 h (單位:m)與起跳后的時(shí)間 t (單位:s) 存在函數(shù)關(guān)系,如果用運(yùn)動(dòng)員在某段時(shí)間內(nèi)的平均速度 描述其運(yùn)動(dòng)狀態(tài), 那么:,在0 t 0.5這段時(shí)間里,在1 t 2這段時(shí)間里,平均速度不能反映他在這段時(shí)間里運(yùn)動(dòng)狀態(tài), 需要用瞬時(shí)速度描述運(yùn)動(dòng)狀態(tài)。,計(jì)算運(yùn)動(dòng)員在 這段時(shí)間里的平均速度,并思考下面的問題:,(1) 運(yùn)動(dòng)員在這段時(shí)間里是靜止的嗎? (2) 你認(rèn)為用平均速度描述運(yùn)動(dòng)員的運(yùn)動(dòng)狀態(tài)有什么問題嗎?,探 究:,現(xiàn)有南京市某年3月和4月某天日最高氣溫記載.,觀察:3月18日到4月18日與4月18日到4月20日的溫度,變化,用曲線圖表示為:,(注: 3月18日為第一天),問題3:,問題1:“氣溫陡增”是一句生活用語,它的數(shù)學(xué)意義 是什么?(形與數(shù)兩方面),問題2:如何量化(數(shù)學(xué)化)曲線上升的陡峭程度?,(1 )曲線上BC之間一段幾乎成了“直線”,由此聯(lián)想如何量化直線的傾斜程度。,(2)由點(diǎn)B上升到C點(diǎn),必須考察yCyB的大小,但僅僅注意 yCyB的大小能否精確量化BC段陡峭程度,為什么?,在考察yCyB的同時(shí)必須考察xCxB,函數(shù)的本質(zhì)在于一個(gè) 量的改變本身就隱含著這種改變必定相對(duì)于另一個(gè)量的改變。,(3)我們用比值 近似地量化B、C這一段曲線的陡峭程度,并稱該比值為【32,34】上的平均變化率,(4)分別計(jì)算氣溫在區(qū)間【1,32】 【32,34】的平均變化率,現(xiàn)在回答問題1:“氣溫陡增”是一句生活用語,它的 數(shù)學(xué)意義是什么?(形與數(shù)兩方面),定義:,平均變化率:,式子 稱為函數(shù) f (x)從x1到 x2的平均變化率.,令x = x2 x1 , y = f (x2) f (x1) ,則,理解: 1,式子中x 、 y 的值可正、可負(fù),但 的x值不能為0, y 的值可以為0 2,若函數(shù)f (x)為常函數(shù)時(shí), y =0 3, 變式,思考:,觀察函數(shù)f(x)的圖象 平均變化率 表示什么?,O,A,B,x,y,Y=f(x),x1,x2,f(x1),f(x2),x2-x1,f(x2)-f(x1),直線AB的斜率,練習(xí):,1.甲用5年時(shí)間掙到10萬元, 乙用5個(gè)月時(shí)間掙到2萬元, 如何比較和評(píng)價(jià)甲、乙兩人的經(jīng)營成果?,2.已知函數(shù) f (x) = 2 x +1, g (x) = 2 x, 分別計(jì)算在下列區(qū)間上 f (x) 及 g (x) 的平均變化率.,(1) 3 , 1 ; (2) 0 , 5 .,做兩個(gè)題吧!,1 、已知函數(shù)f(x)=-x2+x的圖象上的一點(diǎn)A(-1,-2)及臨近一點(diǎn)B(-1+x,-2+y),則y/x=( ) A 、 3 B、 3x-(x)2 C 、 3-(x)2 D 、3-x,D,2、求y=x2在x=x0附近的平均變化率. 2x0+x,小結(jié):,1.函數(shù)的平均變化率,2.求函數(shù)的平均變化率的步驟: (1)求函數(shù)的增量f=y=f(x2)-f(x1); (2)計(jì)算平均變化率,