高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 三角函數(shù)、解三角形 4.6 三角恒等變換課件 文 北師大版.ppt
4.6 三角恒等變換,考綱要求:能運(yùn)用和與差的三角函數(shù)公式進(jìn)行簡(jiǎn)單的恒等變換(包括導(dǎo)出積化和差、和差化積、半角公式,但這三組公式不要求記憶).,1.公式的常見變形 (1)tan +tan =tan(+)(1-tan tan ) ; tan -tan =tan(-)(1+tan tan ) .,2.輔助角公式,2,3,4,1,5,×,×,×,×,2,3,4,1,5,2.(2015貴州適應(yīng)性考試)已知(0,),且 ,則tan 2=( ),答案,解析,2,3,4,1,5,答案,解析,2,3,4,1,5,答案,解析,2,3,4,1,5,5.已知sin +cos = ,則sin 2= .,答案,解析,2,3,4,1,5,自測(cè)點(diǎn)評(píng) 1.求三角函數(shù)式的最值,常常通過三角恒等變換化簡(jiǎn)成只含有一種三角函數(shù)的代數(shù)式,這化簡(jiǎn)過程中往往用到公式asin x+bcos 2.倍角的形式是多樣的,比如:2是的倍角,是 的倍角,4是2的倍角,45°是22.5°的倍角等. 3.三角變換的過程主要是減元的過程,主要思路是把異角、異次、異名化為同角、同次、同名.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,考點(diǎn)1三角函數(shù)式的化簡(jiǎn)、求值,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,思考:三角函數(shù)式化簡(jiǎn)、求值的基本思路是什么?化簡(jiǎn)的一般標(biāo)準(zhǔn)是怎樣的? 解題心得:1.三角化簡(jiǎn)、求值的一般思路:異名三角函數(shù)化為同名三角函數(shù),異角化為同角,異次化為同次,切化弦,特殊值與特殊角的三角函數(shù)互化. 2.三角化簡(jiǎn)的標(biāo)準(zhǔn):三角函數(shù)名稱盡量少,次數(shù)盡量低,最好不含分母,能求值的盡量求值. 3.化簡(jiǎn)、求值的主要技巧: (1)尋求角與角之間的關(guān)系,化非特殊角為特殊角; (2)正確靈活地運(yùn)用公式,通過三角變換消去或約去一些非特殊角的三角函數(shù)值.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,考點(diǎn)2三角函數(shù)式的求值(多維探究) 類型一 給角求值問題 例2化簡(jiǎn):sin 50°(1+ tan 10°)= . 思考:解決“給角求值”問題的一般思路是什么?,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,類型二 給值求角問題,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,思考:解決“給值求角”問題的一般思路是什么?,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,類型三 給值求值問題,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,思考:解決“給值求值”問題的關(guān)鍵是什么?“給角求值”問題與“給值求值”問題有什么聯(lián)系? 解題心得:1.“給角求值”:一般所給出的角都是非特殊角,從表面上來(lái)看是很難的,但仔細(xì)觀察非特殊角與特殊角總有一定關(guān)系,解題時(shí),要利用觀察得到的關(guān)系,結(jié)合公式轉(zhuǎn)化為特殊角并且消除非特殊角的三角函數(shù)而得解. 2.解“給值求角”問題的一般思路是:先求角的某種三角函數(shù)的值;然后根據(jù)已知條件確定角的范圍;最后根據(jù)角的范圍寫出所求的角.在求角的某種三角函數(shù)值時(shí),選函數(shù)的原則是:(1)已知正切函數(shù)值,選正切函數(shù);(2)已知正、余弦函數(shù)值,選正弦或余弦函數(shù).若角的范圍是 ,選正、余弦皆可;若角的范圍是(0,),選余弦較好;若角的范圍為 ,選正弦較好.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,3.求解“給值求值”問題的關(guān)鍵在于“變角”,使其角相同或具有某種關(guān)系;“給值求角”問題實(shí)質(zhì)是轉(zhuǎn)化為“給值求值”,先求角的某一函數(shù)值,再求角的范圍,確定角.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,對(duì)點(diǎn)訓(xùn)練2 (1)(2015河北衡水中學(xué)二調(diào)) =( ) A.4 B.2 C.-2 D.-4,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,考點(diǎn)3三角變換在圖像與性質(zhì)中的應(yīng)用 例5已知函數(shù)f(x)=sin2x-sin2 ,xR. (1)求f(x)的最小正周期; (2)求f(x)在區(qū)間 上的最大值和最小值. 思考:解決三角變換在三角函數(shù)圖像與性質(zhì)中的應(yīng)用的基本思路是什么?,答案,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,思考:解決三角變換在三角函數(shù)圖像與性質(zhì)中的應(yīng)用的基本思路是什么? 解題心得:解決三角變換在三角函數(shù)圖像與性質(zhì)中的應(yīng)用的基本思路是:通過變換把函數(shù)化為y=Asin(x+)的形式再研究其性質(zhì),解題時(shí)注意觀察角、名、結(jié)構(gòu)等特征,注意利用整體思想解決相關(guān)問題.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,1.三角恒等變換主要有以下四變: (1)變角:目的是溝通題設(shè)條件與結(jié)論中所涉及的角,其方法通常是“配湊”. (2)變名:通過變換函數(shù)名稱達(dá)到減少函數(shù)種類的目的,其手法通常有切化弦、正、余弦互化等. (3)變冪:通過“升冪與降冪”,把三角函數(shù)式的各項(xiàng)變成同次,目的是有利于應(yīng)用公式. (4)變式:根據(jù)式子的結(jié)構(gòu)特征進(jìn)行變形,使其更貼近某個(gè)公式或某個(gè)期待的目標(biāo),其方法通常有:常值代換、逆用或變用公式、通分約分、分解與組合、配方與平方等.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,知識(shí)方法,易錯(cuò)易混,三角變換的應(yīng)用主要是將三角變換與三角函數(shù)的性質(zhì)相結(jié)合,通過變換把函數(shù)化為最簡(jiǎn)形式y(tǒng)=Asin(x+)再研究性質(zhì),解題時(shí)注意觀察角、名、結(jié)構(gòu)等特征,注意利用整體思想解決相關(guān)問題.,