平行線的判定 教學(xué)設(shè)計(jì)
平行線的判定 教學(xué)設(shè)計(jì)新學(xué)網(wǎng)首頁>語文>數(shù)學(xué)>物理>化學(xué)5.2.2平行線的判定【教學(xué)重點(diǎn)與難點(diǎn)】教學(xué)重點(diǎn):探索并掌握直線平行的判定方法教學(xué)難點(diǎn):直線平行的判定方法的應(yīng)用【教學(xué)目標(biāo)】1、經(jīng)歷觀察、操作、想像、推理、交流等活動,進(jìn)一步發(fā)展空間觀念,推理能力和有條理表達(dá)能力。2、經(jīng)歷探究直線平行的判定方法的過程,掌握直線平行的判定方法,領(lǐng)悟歸納和轉(zhuǎn)化的數(shù)學(xué)思想方法?!窘虒W(xué)方法】通過創(chuàng)設(shè)情境,以問題為載體給學(xué)生提供探索的空間,引導(dǎo)學(xué)生積極探索。教學(xué)環(huán)節(jié)的設(shè)計(jì)與展開,都以問題的解決為中心,使教學(xué)過程成為在教師指導(dǎo)下學(xué)生的一種自主探索的學(xué)習(xí)活動過程,在探索中形成自己的觀點(diǎn)?!窘虒W(xué)過程】一、復(fù)習(xí)舊知 引入新課(設(shè)計(jì)說明:復(fù)習(xí)同位角、內(nèi)錯角、同旁內(nèi)角的識別,為探究利用角的關(guān)系判斷兩直線平行做好準(zhǔn)備,由平行公理推論自然引入新課。)1如圖,已知四條直線AB、AC、DE、FG(1)1與2是直線_和直線_被直線_所截而成的_角.(2) 3與2是直線_和直線_被直線_所截而成的_角.(3) 5與6是直線_和直線_被直線_所截而成的_角.(4) 4與7是直線_和直線_被直線_所截而成的_角.(5) 8與2是直線_和直線_被直線_所截而成的_角.2如果 a b ,b c ,那么_,理由是_.通過上節(jié)課的學(xué)習(xí)我們知道根據(jù)平行公理的推論可以判定兩直線平行,除此之外,還有哪些方法可以判定兩直線平行呢?這是我們這節(jié)課要研究的問題。由此導(dǎo)入新課(教學(xué)說明:能夠熟練的從幾何圖形中熟練識別出同位角、內(nèi)錯角、同旁內(nèi)角及它們是哪兩條直線被哪一直線所截形成的,對利用角的關(guān)系判斷兩直線平行至關(guān)重要,因此在新課開始之前,對相關(guān)知識進(jìn)行復(fù)習(xí),是非常必要的;在復(fù)習(xí)過程中,要關(guān)注學(xué)生識別的熟練程度,及時地進(jìn)行調(diào)整與補(bǔ)充。)二、探索新知(設(shè)計(jì)說明:利用問題引導(dǎo)學(xué)生探究平行線的判定方法,調(diào)動學(xué)生的求知欲,給學(xué)生提供自主探索、與合作交流的空間,培養(yǎng)學(xué)生主動參與數(shù)學(xué)活動的意識。)1、平行線的判定方法1(1)問題:在用直尺和三角形畫平行線過程中,三角尺起著什么樣的作用?學(xué)生演示畫圖過程并分析出在畫平行線的過程中,三角板是為畫pHF與BGF相等。問題:這兩個角具有什么樣的位置關(guān)系,我們是否得到一個判定兩直線平行的方法?教師引導(dǎo)學(xué)生正確表達(dá)平行線的判定方法1并板書。方法1:兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。簡單記為:同位角相等,兩條直線平行。(2)教師引導(dǎo)學(xué)生,結(jié)合圖形用符號語言表達(dá)兩直線平行的判定方法1:如果1=2,那么ABCD.教師強(qiáng)調(diào)判定兩直線平行方法1的條件中有兩層意思:第一層這兩個角是這兩條被第三條直線所截而成的一對同位角;第二層這兩個角相等兩者缺一不可。(3)簡單應(yīng)用.教師表演木工用米尺畫平行線過程,讓學(xué)生說出用角尺畫平行線的道理教師規(guī)范說理過程:因?yàn)镈CB與FEB是直線CD、EF被AB所截而成的同位角,而且DCB=FEB,即同位角相等,根據(jù)直線平行判定方法,從而CDEF。提出問題:兩條直線線被第三條直線所截形成的內(nèi)錯角相等時,是否兩直線也平行?同旁內(nèi)角之間又有怎樣的關(guān)系時兩直線平行呢?2、判定方法2(1) 問題:若上圖中pHF=HGA,那么ABCD,為什么?分析:目前我們掌握了兩種判定兩直線平行的方法,但問題的條件都不符合,而根據(jù)問題的情景(兩條直線被第三條直線所截),可以利用判定方法1同位角相等,兩直線平行來解決問題,這就需要將以問題中的內(nèi)錯角相等轉(zhuǎn)化為同位角相等??梢韵确攀肿寣W(xué)生嘗試獨(dú)立解決,后小組交流師生共同規(guī)范說理過程:因?yàn)閜HF=HGA,而BGF=HGA(對頂角相等),所以1=2, 即同位角相等因此ABCD(2)師生歸納判定兩條直線平行的方法2,教師板書:兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行。簡單記為:內(nèi)錯角相等,兩直線平行。教師引導(dǎo)學(xué)生結(jié)合圖形用符號語言表達(dá)方法2:如果pHF=HGA,那么ABCD。3、判定方法3討論:同旁內(nèi)角數(shù)量上滿足什么關(guān)系時,兩直線平行?學(xué)生根據(jù)圖像先排除相等,當(dāng)4是銳角時,2是鈍角才有可能使ab,進(jìn)一步觀察猜想:如果同旁內(nèi)角互補(bǔ)時,兩條直線平行,即如果24=180 ,那么ab。學(xué)生利用平行判定方法1或方法2來說明猜想正確.教師根據(jù)學(xué)生說理,再準(zhǔn)確地板書:因?yàn)?2=180,而41=180,根據(jù)同角的補(bǔ)角相等,所以有2=1, 即同位角相等,從而ab。因?yàn)?2=180,而43=180,根據(jù)同角的補(bǔ)角相等,所以有3=2,,即內(nèi)錯角相等,從而ab。師生歸納兩條直線平行的判定方法3,教師板書:兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么兩條直線平行。簡單記為:同旁內(nèi)角互補(bǔ),兩直線平行。結(jié)合圖形用符號語言表達(dá):如果42=180,那么ab。教師總結(jié):我們在遇到一個新問題時常常利用已學(xué)的知識將其轉(zhuǎn)化為已知的(或以解決的)問題,在這節(jié)課中,平行線的判定方法2、3就是借助于對頂角相等或鄰補(bǔ)角互補(bǔ),將內(nèi)錯角相等轉(zhuǎn)化為同位角相等,或?qū)⑼詢?nèi)角互補(bǔ)轉(zhuǎn)化為同位角相等而得出的,這種將未知轉(zhuǎn)化為已知的方法是數(shù)學(xué)中的一種重要方法,這也是我們今后推理常用的方法。(教學(xué)說明:平行線的判定方法1是結(jié)合平行線的畫法給出的,大部分學(xué)生可能會用直尺和三角板畫平行線,但學(xué)生并不明白畫圖的原理,因此可能有部分學(xué)生并不能熟練的畫圖,也不能理解三角板從中所起的作用,因此在教學(xué)時,要給學(xué)生充分的回憶和分析的時間。判定方法2、3是采用了探討問題的方式,引導(dǎo)學(xué)生通過自主探索、合作交流與分析去發(fā)現(xiàn)角與兩直線平行之間的關(guān)系,在分析思考的過程中注意向?qū)W生滲透分析問題的方法。同時要特別關(guān)注三個結(jié)論的三種語言(文字、圖形、符號)的相互轉(zhuǎn)化,尤其是符號語言這是今后推理的基礎(chǔ)。完成三個判定方法的探究后教師進(jìn)行了了一個方法小結(jié),有意識的讓學(xué)生認(rèn)識數(shù)學(xué)中的轉(zhuǎn)化思想,讓學(xué)生逐步得學(xué)會應(yīng)用它。)初步應(yīng)用:例:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行嗎?為什么?分析:垂直與直角總聯(lián)系在一起.,至于要判定兩條直線是否平行,先考慮學(xué)過哪些判定平行線的方法,題中的條件與哪種判定方法的條件相同。學(xué)生先口述判斷與理由,教師糾正并規(guī)范板書兩步推理過程:因?yàn)閎a,ca,所以1=2=90,從而bc.教師說明:這個道理過程有兩個因?yàn)樗?. 第一個“因?yàn)椤薄八浴笔歉鶕?jù)垂直定義,第二個只寫出“所以”的內(nèi)容bc,中間省略一個“因?yàn)椤钡膬?nèi)容,這個內(nèi)容就是第一個“所以”中的1=2.這樣處理是使說理表達(dá)更簡練, 第二個“因?yàn)椤薄ⅰ八浴笔歉鶕?jù)同位角相等,兩直線平行.例題講解后,師提問:你還能利用其他方法說明bc嗎?教師鼓勵學(xué)生模仿課本方法用圖(1)內(nèi)錯角相等的方法寫出理由,用圖(2) 同旁內(nèi)角互補(bǔ)的方法寫出理由.(1) (2)如果1,2不是同位角,也不是內(nèi)錯角、同旁內(nèi)角,如圖(3), 教師啟發(fā)學(xué)生用化歸思想將它轉(zhuǎn)化為已知問題來解決,并且有條理地陳述理由:如圖(3),因?yàn)閍b,ca,所以1=90,2=90.因?yàn)?=1=90,從而bc(同位角相等,兩直線平行). (3)(教學(xué)說明:此問題的難度不大,是平行線判定的應(yīng)用方法可以有多種,鼓勵學(xué)生用多種方法解決,現(xiàn)在對于推理證明的要求已經(jīng)到了簡單推理的層次,因此,在解決問題的過程中,不僅要關(guān)注學(xué)生說理的能力,還要關(guān)注學(xué)生是否能規(guī)范書寫推理過程)三、鞏固訓(xùn)練 熟練技能(設(shè)計(jì)說明:通過形式不同的練習(xí)加強(qiáng)學(xué)生對知識的理解,訓(xùn)練學(xué)生靈活應(yīng)用知識解決問題的能力)一、判斷題1.兩條直線被第三條直線所截,如果同位角相等,那么內(nèi)錯角也相等。( )2.兩條直線被第三條直線所截,如果內(nèi)錯角互補(bǔ),那么同旁內(nèi)角相等。( )二、填空1.如圖1,如果3=7,或_,那么_,理由是_;如果5=3,或_,那么_, 理由是_; 如果2 5= _ 或者_(dá),那么ab,理由是_.(1) (2) (3)2.如圖2,若2=6,則_,如果3456=180, 那么_,如果9=_,那么ADBC;如果9=_,那么ABCD.三、選擇題1.如圖3所示,下列條件中,不能判定ABCD的是( )A.ABEF,CDEF B.5=A; C.ABCBCD=180 D.2=32.右圖,由圖和已知條件,下列判斷中正確的是( )A.由1=6,得ABFG;B.由12=67,得CEEIC.由1235=180,得CEFI;D.由5=4,得ABFG四、已知直線a、b被直線c所截,且12=180,試判斷直線a、b的位置關(guān)系,并說明理由.