歡迎來到裝配圖網! | 幫助中心 裝配圖網zhuangpeitu.com!
裝配圖網
ImageVerifierCode 換一換
首頁 裝配圖網 > 資源分類 > PPS文檔下載  

微積分建立的時代背景和歷史意義

  • 資源ID:15789014       資源大?。?span id="avqbmwx" class="font-tahoma">349KB        全文頁數:23頁
  • 資源格式: PPS        下載積分:9.9積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

微積分建立的時代背景和歷史意義

,微積分建立的時代背景和歷史意義,2020年9月6日星期日,重慶市萬州高級中學 曾國榮,.,微積分的概念 微積分的萌芽 微積分的發(fā)展 微積分的建立 微積分創(chuàng)立的現(xiàn)實意義 牛頓與萊布尼茨 數學史料,微積分建立的時代背景和歷史意義,1、微積分學是微分學和積分學的總稱。微積分是研究函數的微分、積分以及有關概念和應用的數學分支科學。微積分中的基本概念是函數、極限、實數、導數、積分等,其中極限是微積分的基石。,2、研究函數,從量的方面研究事物運動變化是微積分的基本方法。這種方法叫做數學分析。,一、微積分的概念,4、微分學的主要內容包括:極限理論、導數、微分等。,3、本來從廣義上說,數學分析包括微積分、函數論等許多分支學科,但是現(xiàn)在一般已習慣于把數學分析和微積分等同起來,數學分析成了微積分的同義詞,一提數學分析就知道是指微積分。微積分的基本概念和內容包括微分學和積分學。,5、積分學的主要內容包括:定積分、不定積分等。,一、微積分的概念,6、微積分的產生和發(fā)展被譽為“近代技術文明產生的關鍵事件之一,它引入了若干極其成功的、對以后許多數學的發(fā)展起決定性作用的思想。”恩格斯稱之為“17世紀自然科學的三大發(fā)明之一?!?7、微積分的建立,無論是對數學還是對其他科學以至于技術的發(fā)展都產生了巨大的影響,充分顯示了數學對于人的認識發(fā)展、改造世界的能力的巨大促進作用。,一、微積分的概念,(1)中國數學家的極限、積分思想, “割圓求周”(三國劉徽), 圓周率、球體積、球表面積的研究 (祖沖之、祖暅),一尺之棰,日取其半,萬世不竭(戰(zhàn)國莊周),樸素、典型的極限概念,二、微積分的萌芽,(2)外國數學家的極限、積分思想, 公元前三世紀,古希臘的阿基米德在研究解決拋物弓形的面積、球和球冠面積、螺線下面積和旋轉雙曲體的體積的問題中,就隱含著近代積分學的思想。, 歐幾里得(公元前330年前275年)是古希臘數學家,以其所著的幾何原本聞名于世,其中對不可約量及面積與體積的研究,包含了窮竭法的萌芽。,二、微積分的萌芽,1、到了十六世紀,有許多科學問題需要解決,由于航海、機械制造、軍事上的需要,運動的研究成了自然科學的中心議題,于是在數學中開始研究各種變化過程中的量(變量)之間的依賴關系,變量的引進,形成了數學中的轉折點。,2、到了十七世紀,生產的發(fā)展提出了許多技術上的新要求,這些科學問題的解決,對數學提出了新的要求,也就成了促使微積分產生的因素。,三、微積分的發(fā)展,3、十七世紀的許多著名的數學家、天文學家、物理學家都為解決問題作了大量的研究工作,如法國的費爾瑪、笛卡兒、羅伯瓦、笛沙格;英國的巴羅、瓦里士;德國的開普勒;意大利的卡瓦列利等人都提出許多很有建樹的理論。為微積分的創(chuàng)立做出了貢獻。,三、微積分的發(fā)展,第一類是研究物體運動的時候直接出現(xiàn)的,也就是求即時速度的問題。,第二類問題是求曲線的切線的問題。,4、十七世紀中葉其他科學提出的 四種亟待解決的數學問題:,天文學、力學等涉及許多非勻速運動,大多數也不是直線運動,傳統(tǒng)的數學方法無能為力,要求新的數學工具。,不僅是幾何學的問題,而且也是許多其他科學問題的要求,如物體作曲線運動,光的折射和反射。,第三類問題是求函數的最大值和最小值問題。,第四類問題是求曲線長、曲線圍成的面積、曲面圍成的體積、物體的重心、一個體積相當大的物體作用于另一物體上的引力。,天文學和力學都有關,例如求行星運動的近日點遠日點,拋射體的最大射程和高度等。,4、十七世紀中葉其他科學提出的 四種亟待解決的數學問題:,1、十七世紀下半葉,在前人工作的基礎上,英國大科學家牛頓和德國數學家萊布尼茨分別在自己的國度里獨自研究和完成了微積分的創(chuàng)立工作,雖然這只是十分初步的工作。他們的最大功績是把兩個貌似毫不相關的問題聯(lián)系在一起,一個是切線問題(微分學的中心問題),一個是求積問題(積分學的中心問題)。,四、微積分的建立,2、牛頓和萊布尼茨建立微積分的出發(fā)點是直觀的無窮小量,因此這門學科早期也稱為無窮小分析,這正是現(xiàn)在數學中分析學這一大分支名稱的來源。牛頓研究微積分著重于從運動學來考慮,萊布尼茨卻是側重于幾何學來考慮的。,四、微積分的建立,1、微積分學的創(chuàng)立,極大地推動了數學的發(fā)展,過去很多初等數學束手無策的問題,運用微積分,往往迎刃而解,顯示出微積分學的非凡威力。,2、一門科學的創(chuàng)立決不是某一個人的業(yè)績,他必定是經過多少人的努力后,在積累了大量成果的基礎上,最后由某個人或幾個人總結完成的。微積分也是這樣。,五、微積分創(chuàng)立的歷史意義,3、不幸的事,由于人們在欣賞微積分的宏偉功效之余,在提出誰是這門學科的創(chuàng)立者的時候,竟然引起了一場悍然大波,造成了歐洲大陸的數學家和英國數學家的長期對立。英國數學在一個時期里閉關鎖國,囿于民族偏見,過于拘泥在牛頓的“流數術”中停步不前,因而數學發(fā)展整整落后了一百年。,五、微積分創(chuàng)立的歷史意義,4、其實,牛頓和萊布尼茨分別是自己獨立研究,在大體上相近的時間里先后完成的。比較特殊的是牛頓創(chuàng)立微積分要比萊布尼茨早10年左右,但是正式公開發(fā)表微積分這一理論,萊布尼茨卻要比牛頓發(fā)表早三年。他們的研究各有長處,也都各有短處。那時候,由于民族偏見,關于發(fā)明優(yōu)先權的爭論竟從1699年始延續(xù)了一百多年。,五、微積分創(chuàng)立的歷史意義,5、應該指出,這是和歷史上任何一項重大理論的完成都要經歷一段時間一樣,牛頓和萊布尼茨的工作也都是很不完善的。他們在無窮和無窮小量這個問題上,其說不一,十分含糊。牛頓的無窮小量,有時候是零,有時候不是零而是有限的小量;萊布尼茨的也不能自圓其說。這些基礎方面的缺陷,最終導致了第二次數學危機的產生。,五、微積分創(chuàng)立的歷史意義,6、微積分是與應用聯(lián)系著發(fā)展起來的,最初牛頓應用微積分學及微分方程為了從萬有引力定律導出了開普勒行星運動三定律。此后,微積分學極大的推動了數學的發(fā)展,同時也極大的推動了天文學、力學、物理學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學各個分支中的發(fā)展。并在這些學科中有越來越廣泛的應用,特別是計算機的出現(xiàn)更有助于這些應用的不斷發(fā)展。,五、微積分創(chuàng)立的歷史意義,牛頓,是英國偉大的數學家、物理學家、天文學家和自然哲學家。1642年12月25日生于英格蘭林肯郡格蘭瑟姆附近的沃爾索普村,1727年3月20日在倫敦病逝。 牛頓1661年入英國劍橋大學三一學院,1665年獲文學士學位。隨后兩年在家鄉(xiāng)躲避瘟疫。這兩年里,他制定了一生大多數重要科學創(chuàng)造的藍圖。1667年回劍橋后當選為三一學院院委,次年獲碩士學位。1669年任盧卡斯教授直到1701年。1696年任皇家造幣廠監(jiān)督,并移居倫敦。1703年任英國皇家學會會長。1706年受女王安娜封爵。他晚年潛心于自然哲學與神學。 牛頓在科學上最卓越的貢獻是微積分和經典力學的創(chuàng)建。,牛頓,牛頓在1671年寫了流數法和無窮級數,這本書直到1736年才出版,它在這本書里指出,變量是由點、線、面的連續(xù)運動產生的,否定了以前自己認為的變量是無窮小元素的靜止集合。他把連續(xù)變量叫做流動量,把這些流動量的導數叫做流數。牛頓在流數術中所提出的中心問題是:已知連續(xù)運動的路徑,求給定時刻的速度(微分法);已知運動的速度求給定時間內經過的路程(積分法)。,牛頓,萊布尼茨,萊布尼茨,德國數學家、哲學家,和牛頓同為微積分的創(chuàng)始人;1646年7月1日生于萊比錫,1716年11月14日卒于德國的漢諾威。 他父親是萊比錫大學倫理學教授,家庭豐富的藏書引起他廣泛的興趣。1661年入萊比錫大學學習法律,又曾到耶拿大學學習幾何,1666年在紐倫堡阿爾特多夫取得法學博士學位。他當時寫的論文論組合的技巧已含有數理邏輯的早期思想,后來的工作使他成為數理邏輯的創(chuàng)始人。 1667年他投身外交界,曾到歐洲各國游歷。1676年到漢諾威,任腓特烈公爵顧問及圖書館的館長,并常居漢諾威,直到去世。 萊布尼茨的多才多藝在歷史上很少有人能和他相比,他的著作包括數學、歷史、語言、生物、地質、機械、物理、法律、外交等各個方面。,萊布尼茨是一個博才多學的學者,1684年,他發(fā)表了現(xiàn)在世界上認為是最早的微積分文獻,這篇文章有一個很長而且很古怪的名字一種求極大極小和切線的新方法,它也適用于分式和無理量,以及這種新方法的奇妙類型的計算。就是這樣一片說理也頗含糊的文章,卻有劃時代的意義。他以含有現(xiàn)代的微分符號和基本微分法則。1686年,萊布尼茨發(fā)表了第一篇積分學的文獻。他是歷史上最偉大的符號學者之一,他所創(chuàng)設的微積分符號,遠遠優(yōu)于牛頓的符號,這對微積分的發(fā)展有極大的影響?,F(xiàn)在我們使用的微積分通用符號就是當時萊布尼茨精心選用的.,萊布尼茨,再見,重慶市萬州高級中學 曾國榮,

注意事項

本文(微積分建立的時代背景和歷史意義)為本站會員(san****019)主動上傳,裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。 若此文所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網速或其他原因下載失敗請重新下載,重復下載不扣分。




關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!