高一數(shù)學(xué)必修二 空間幾何體的結(jié)構(gòu) ppt.ppt
,空間幾何體的結(jié)構(gòu)(一),如果我們只考慮物體的形狀和大小,而不考 慮其它因素,那么由這些物體抽象出來的空 間圖形就叫做空間幾何體。,1.空間幾何體,將上述圖片中的物體分成兩類,說明分類標(biāo)準(zhǔn)是什么?,一:多面體,由若干個(gè)平面多邊形圍成的幾何體,B,A,A,O,B,O,二:旋轉(zhuǎn)體,由一個(gè)平面圖形繞它所在平面內(nèi)的一條定直線旋轉(zhuǎn)所形成的封閉幾何體叫做旋轉(zhuǎn)體,1、有兩個(gè)面互相平行; 2、其余各面都是四邊形; 3、每相鄰兩個(gè)四邊形的公共邊都互相平行.,滿足上述三個(gè)條件的多面體 叫棱柱.,棱柱:有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。,底面,用表示底面各頂點(diǎn)表示棱柱。,三:棱柱的結(jié)構(gòu)特征:,問題:有兩個(gè)面互相平行,其余各面都是平行四邊形的幾何體是棱柱嗎?,答:不一定是 如圖所示,不是棱柱,A,D,A,B,B,C,C,D,問題1:長方體ABCD-ABCD中,你能說出它的底面嗎?互相平行的平面有幾對?,變式:長方體ABCD-ABCD按如圖截去 一部分,其中FGAD.你能說出這兩部分 的幾何體是什么嗎?,A,D,A,B,C,D,E,H,F,G,四:棱錐的結(jié)構(gòu)特征,棱錐:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體叫做棱錐。,棱錐也用表示頂點(diǎn)和底面各頂點(diǎn)的字母表示。,1.下面圖形中,為棱錐的是,(1),(2),(3),五、棱臺的概念:用一個(gè)平行于棱錐底面的平面去截棱錐,底面和截面之間的部分叫做棱臺。,2.判斷下列幾何體是不是棱臺,并說明 為什么.,探究:棱柱、棱錐、棱臺都是多面體,三者關(guān)系如何?當(dāng)?shù)酌姘l(fā)生變化時(shí),它們能否相互轉(zhuǎn)化?,上下底面一樣,上底面變成一個(gè)點(diǎn),A,A,六:什么叫圓柱,定義:以矩形的一邊所在直線為旋轉(zhuǎn)軸,其余邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫做圓柱。,B,O,B,O,S,A,B,O,定義:以直角三角形的一條直角邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫做圓錐。,七:圓錐的結(jié)構(gòu)特征,八:圓臺的結(jié)構(gòu)特征,圓臺的結(jié)構(gòu)特征,1、定義:用一個(gè)平行于圓錐底面的平面去截圓錐,底面與截面之間的部分,這樣的幾何體叫做圓臺。,2、圓臺的表示:用表示它的軸的字母表示,如圓臺OO,3、圓臺與棱臺統(tǒng)稱為臺體。,O,半徑,球心,定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體.,九:球的結(jié)構(gòu)特征,小結(jié):,空間幾何體,多面體,旋轉(zhuǎn)體,棱 柱,棱 臺,棱 錐,圓 柱,圓 臺,圓 錐,球 體,